版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解三角形知识点总结及典型例题一、 知识点复习1、正弦定理及其变形 2、正弦定理适用情况:(1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况)已知a,b和A,求B时的解的情况: 如果,则B有唯一解;如果,则B有两解;如果,则B有唯一解;如果,则B无解.3、余弦定理及其推论 4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边.5、常用的三角形面积公式(1);(2)(两边夹一角).6、三角形中常用结论(1);(2).(3)在ABC中,所以;. .二、典型例题题型1 边角互化例1 在中,若,则角的度数为 【解析】由正弦定理可得,,令依次为,则=因为,所以例2
2、若、是的三边,则函数的图象与轴( )A、有两个交点 B、有一个交点 C、没有交点 D、至少有一个交点 【解析】由余弦定理得,所以=,因为1,所以0,因此0恒成立,所以其图像与轴没有交点。题型2 三角形解的个数例3在中,分别根据下列条件解三角形,其中有两解的是( )A、,;B、,;C、,; D、,。题型3 面积问题例4 的一个内角为,并且三边构成公差为的等差数列,则的面积为 【解析】设ABC的三边分别:,C=120°,由余弦定理得:,解得:,三边分别为6、10、14,.题型4 判断三角形形状例5 在中,已知,判断该三角形的形状。【解析】把已知等式都化为角的等式或都化为边的等式。方法一:
3、由正弦定理,即知由,得或,即为等腰三角形或直角三角形.方法二:同上可得由正、余弦定理,即得:即或,即为等腰三角形或直角三角形.【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。(边化角)题型5 正弦定理、余弦定理的综合运用例6在中,分别为角的对边,且且(1)当时,求的值;(2)若角为锐角,求的取值范围。【解析】(1)由题设并由正弦定理,得
4、,解得,或(2)由余弦定理,=即,因为,所以,由题设知,所以.三、课堂练习:1、满足,的的个数为,则为 .2、 已知,解三角形。3、在中,已知,如果利用正弦定理解三角形有两解,则的取值范围是( ) A、B、C、D、4、 在中,若则角 .5、设是外接圆的半径,且,试求面积的最大值。6、在中,为边上一点,求.7、在中,已知分别为角的对边,若,试确定形状。8、在中,分别为角的对边,已知(1)求;(2)若求的面积。四、课后作业1、在中,若,且,则是 A、等边三角形B、钝角三角形C、直角三角形D、等腰直角三角形2、中若面积S=则角 3、清源山是国家级风景名胜区,山顶有一铁塔,在塔顶处测得山下水平面上一点的俯角为,在塔底处测得点的俯角为,若铁塔的高为,则清源山的高度为 。A、B、C、D、4、 的三个内角为,求当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年华东师大版八年级地理上册月考试卷含答案
- 2025年人教新起点八年级历史下册月考试卷含答案
- 2025年度农业科技示范项目-太阳能灌溉系统研发与推广合同3篇
- 二零二五版物流企业派遣员工运输管理合同4篇
- 二零二五版智能安防系统集成与门面房装修合同4篇
- 二零二五年度厨房设备环保材料采购合同11篇
- 二零二五年度大型活动模特选拔与合作合同模板4篇
- 二零二五版民品典当借款合同终止条件说明4篇
- 二零二五年度慈溪市编制智慧城市建设合同3篇
- 二零二五年度厨房员工劳动合同加班费计算与支付合同4篇
- 2024年山东省泰安市高考物理一模试卷(含详细答案解析)
- 护理指南手术器械台摆放
- 肿瘤患者管理
- 2025年中国航空部附件维修行业市场竞争格局、行业政策及需求规模预测报告
- 2025春夏运动户外行业趋势白皮书
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 2024年医疗器械经营质量管理规范培训课件
- 零部件测绘与 CAD成图技术(中职组)冲压机任务书
- 2024年计算机二级WPS考试题库380题(含答案)
- 高低压配电柜产品营销计划书
评论
0/150
提交评论