




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选文档对数与对数函数测试题一、选择题。1的值是( )AB1CD22若log2=0,则x、y、z的大小关系是( )AzxyBxyzCyzxDzyx3已知x=+1,则log4(x3x6)等于( )A.B.C.0D.4已知lg2=a,lg3=b,则等于( )ABCD5已知2lg(x2y)=lgxlgy,则的值为( )A1B4C1或4D4或166.函数y=的定义域为( )A(,)B1,C(,1D(,1)7已知函数y=log(ax22x1)的值域为R,则实数a的取值范围是( )Aa1B0a1C0a1D0a18.已知f(ex)=x,则f(5)等于( )Ae5B5eCln5Dlog5eOxyOxyOxyO
2、xy9若的图像是( )A B C D10若在区间上是增函数,则的取值范围是( )ABCD11设集合等于( )ABCD12函数的反函数为( )ABCD二、填空题.13计算:log2.56.25lgln=14函数y=log4(x1)2(x1的反函数为_15已知m1,试比较(lgm)0.9与(lgm)0.8的大小16函数y=(logx)2logx25在2x4时的值域为_三、解答题.17已知y=loga(2ax)在区间0,1上是x的减函数,求a的取值范围18已知函数f(x)=lg(a21)x2(a1)x1,若f(x)的定义域为R求实数a的取值范围19已知f(x)=x2(lga2)xlgb,f(1)=2
3、,当xR时f(x)2x恒成立,求实数a的值,并求此时f(x)的最小值?20设0x1,a0且a1,试比较|loga(1x)|与|loga(1x)|的大小21已知函数f(x)=loga(aax)且a1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称22在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a1、a2,其中a1,求ABC面积的最大值对数与对数函数测试题参考答案一、选择题:ADBCB CDCBA AB二、填空题:13.,14.y=12x(xR),15.(lgm)0.9(lgm)0.8,16.三、解答题:1
4、7.解析:先求函数定义域:由2ax0,得ax2又a是对数的底数,a0且a1,x由递减区间0,1应在定义域内可得1,a2又2ax在x0,1是减函数y=loga(2ax)在区间0,1也是减函数,由复合函数单调性可知:a11a218、解:依题意(a21)x2(a1)x10对一切xR恒成立当a210时,其充要条件是:解得a1或a又a=1,f(x)=0满足题意,a=1,不合题意所以a的取值范围是:(,1(,)19、解析:由f(1)=2,得:f(1)=1(lga2)lgb=2,解之lgalgb=1,=10,a=10b又由xR,f(x)2x恒成立知:x2(lga2)xlgb2x,即x2xlgalgb0,对x
5、R恒成立,由=lg2a4lgb0,整理得(1lgb)24lgb0即(lgb1)20,只有lgb=1,不等式成立即b=10,a=100f(x)=x24x1=(2x)23当x=2时,f(x)min=320.解法一:作差法|loga(1x)|loga(1x)|=|=(|lg(1x)|lg(1x)|)0x1,01x11x上式=(lg(1x)lg(1x)=·lg(1x2)来源:Zxxk.Com由0x1,得,lg(1x2)0,·lg(1x2)0,|loga(1x)|loga(1x)|解法二:作商法=|log(1x)(1x)|0x1,01x1x,|log(1x)(1x)|=log(1x)
6、(1x)=log(1x)由0x1,1x1,01x210(1x)(1x)1,1x00log(1x)log(1x)(1x)=1|loga(1x)|loga(1x)|解法三:平方后比较大小loga2(1x)loga2(1x)=loga(1x)loga(1x)loga(1x)loga(1x)=loga(1x2)·loga=·lg(1x2)·lg0x1,01x21,01lg(1x2)0,lg0loga2(1x)loga2(1x),即|loga(1x)|loga(1x)|解法四:分类讨论去掉绝对值当a1时,|loga(1x)|loga(1x)|=loga(1x)loga(1x
7、)=loga(1x2)01x11x,01x21loga(1x2)0,loga(1x2)0当0a1时,由0x1,则有loga(1x)0,loga(1x)0|loga(1x)|loga(1x)|=|loga(1x)loga(1x)|=loga(1x2)0当a0且a1时,总有|loga(1x)|loga(1x)|21.解析:(1)定义域为(,1),值域为(,1)(2)设1x2x1a1,于是aa则loga(aa)loga(a)即f(x2)f(x1)f(x)在定义域(,1)上是减函数(3)证明:令y=loga(aax)(x1),则aax=ay,x=loga(aay)f1(x)=loga(aax)(x1)故f(x)的反函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 白酒酿造过程中的食品安全管理考试考核试卷
- 林木育种与气候变化考核试卷
- 玻璃个人防护装备考核试卷
- 2025保险公司合同条款汇编
- 2025赴澳大利亚团旅游的合同
- 2025建筑项目安全生产文明施工承包合同书
- 第01讲 丰富的图形世界(原卷板)
- 气象灾害防御条例解读
- 【语用新题】2025届高三下4月名校模考试题
- 二零二五版心理咨询师聘用合同
- 课件-2025年春季学期 形势与政策 第一讲-加快建设社会主义文化强国
- 2025年山东惠民县农业投资发展限公司招聘10人历年高频重点提升(共500题)附带答案详解
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
- 《基于嵌入式Linux的农业信息采集系统设计与研究》
- 外科创伤处理-清创术(外科课件)
- 小型手推式除雪机毕业设计说明书(有全套CAD图)
- 《城市级实景三维数据规范》
- 2024年中国酸奶袋市场调查研究报告
- 合同到期不续签的模板
- 搬迁服务项目 投标方案(技术标)
- 2005室外给水管道附属构筑物阀门井05S502
评论
0/150
提交评论