下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2009年全国硕士研究生入学统一考试数学一试题一、选择题(18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当时,与等价无穷小,则( ). . . .-1-111(2)如图,正方形被其对角线划分为四个区域,则( ). .(3)设函数在区间上的图形为:1-2023-1O则函数的图形为( ).0231-2-11. 0231-2-11.0231-11.0231-2-11(4)设有两个数列,若,则( )当收敛时,收敛.当发散时,发散. 当收敛时,收敛.当发散时,发散.(5)设是3维向量空间的一组基,则由基到基的过渡矩阵为( ).
2、 . .(6)设均为2阶矩阵,分别为的伴随矩阵,若,则分块矩阵的伴随矩阵为( ). .(7)设随机变量的分布函数为,其中为标准正态分布函数,则( ). .(8)设随机变量与相互独立,且服从标准正态分布,的概率分布为,记为随机变量的分布函数,则函数的间断点个数为( )0.1. 2.3.二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数具有二阶连续偏导数,则 。(10)若二阶常系数线性齐次微分方程的通解为,则非齐次方程满足条件的解为 。(11)已知曲线,则 。(12)设,则 。(13)若3维列向量满足,其中为的转置,则矩阵的非零特征值为 。 (14)设为来
3、自二项分布总体的简单随机样本,和分别为样本均值和样本方差。若为的无偏估计量,则 。三、解答题(1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分)求二元函数的极值。(16)(本题满分9分)设为曲线与所围成区域的面积,记,求与的值。(17)(本题满分11分)椭球面是椭圆绕轴旋转而成,圆锥面是过点且与椭圆 相切的直线绕轴旋转而成。()求及的方程()求与之间的立体体积。(18)(本题满分11分)()证明拉格朗日中值定理:若函数在上连续,在可导,则存在,使得()证明:若函数在处连续,在内可导,且,则存在,且。(19)(本题满分10分)计算曲面积分,其中是曲面的外侧。(20)(本题满分11分)设 ()求满足的. 的所有向量,.()对中的任意向量,证明,无关。(21)(本题满分11分)设二次型()求二次型的矩阵的所有特征值;()若二次型的规范形为,求的值。(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以分别表示两次取球所取得的红球、黑球与白球的个数。()求;()求二维随机变量概率分布。(23)(本题满分1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《焊接生产与管理》教学大纲
- 北京青年政治学院学生会学习部2012年辩响青春辩论赛策划案
- 基础业务素质真题
- 教案模板-数据库原理
- 建筑装饰施工电子教案
- 玉溪师范学院《社区工作》2023-2024学年第一学期期末试卷
- 化学实验基本技能训练(一)第二课时(教案)
- 眼镜片账务处理实例-记账实操
- 国标苏教版第十册数学全册教案
- 2019粤教版 高中美术 选择性必修6 现代媒体艺术《第一单元 认识现代媒体艺术》大单元整体教学设计2020课标
- 大学生生涯发展展示 (第二版)
- 应收账款收款进度跟踪管理报表模板
- 《诗经》与楚辞导读智慧树知到答案2024年海口经济学院
- 外研版(三起)三年级英语上册全册单元测试卷(含听力材料及答案)
- 育德育心育心养德
- XXXX无线维护岗位认证教材故障处理思路及案例分析
- 基于创业思维的软件开发技术(JAVA)智慧树知到期末考试答案2024年
- 性传播疾病课件
- 森林防火智能监控设计方案样本
- 计算机应用技术专业大学生生涯发展展示
- 我的大学生涯发展展示
评论
0/150
提交评论