极限计算方法20121013_第1页
极限计算方法20121013_第2页
极限计算方法20121013_第3页
极限计算方法20121013_第4页
极限计算方法20121013_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一讲 极限计算方法2012-10-13高等数学是理工科院校最重要的基础课之一,极限是高等数学的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到高等数学后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。一、极限定义、运算法则和一些结果1定义:(1)自变量趋向无穷大时函数的极限:设函数当大于某一正数时有定义。若存在一个常数,对于任意给定的正数(不论其多么小),总存在着正数,使得对于适合不等式的一切,所对应的函数值都满足不等式,那末常数就叫做函数当时的极限,记作:。(2)自变量趋向有限值

2、时函数的极限:设函数在的某一去心邻域内有定义。若存在一个常数,对于任意给定的 (不论其多么小),总存在正数,使得对于适合不等式的一切,所对应的函数值都满足不等式,则常数就叫做函数当时的极限,记作:。说明:数列极限是情况下时的特殊情形。2极限运算法则定理1 已知 ,都存在,极限值分别为A,B,则下面极限都存在,且有 (1)(2)(3) 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。3两个重要极限(1) (2) ; 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。例如:,;等等。4等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(

3、即极限是0)。定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即有: 。说明:当上面每个函数中的自变量x换成时(),仍有上面的等价关系成立,例如:当时, ; 。定理4 如果函数都是时的无穷小,且,则当存在时,也存在且等于,即=。注:用泰勒公式做等价代换求极限,泰勒公式比用等价无穷小更深刻(数学一和数学二)。当时,5洛比达法则定理5 假设当自变量x趋近于某一定值(或无穷大)时,函数和满足:(1)和的极限都是0或都是无穷大;(2)和都可导,且的导数不为0;(3)存在(或是无穷大);则极限也一定存在,且等于,即= 。说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有

4、一条不满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。6连续性 定理6 一切连续函数在其定义去间内的点处都连续,即如果是函数的定义去间内的一点,则有 。7极限存在准则 定理7(准则1) 单调有界数列必有极限。 定理8(准则2) 已知为三个数列,且满足:(1) (2) , 则极限一定存在,且极限值也是a ,即。8利用导数定义求极限9利用定积分定义求极限二、求极限方法举例1 用初等方法变形后,再利用极限运算法则求极限例1 解:原

5、式= 。注:本题也可以用洛比达法则。例2 解:原式= 。例3 解:原式 。2 利用函数的连续性(定理6)求极限例4 解:因为是函数的一个连续点, 所以 原式= 。3 利用两个重要极限求极限例5 解:原式= 。注:本题也可以用洛比达法则。例6 解:原式= 。例7 解:原式= 。4 利用定理2求极限例8 解:原式=0 (定理2的结果)。5 利用等价无穷小代换(定理4)求极限 例9 解:,原式= 。例10 解:原式= 。注:下面的解法是错误的: 原式= 。 正如下面例题解法错误一样: 。例11 解:, 所以, 原式= 。(最后一步用到定理2)6 利用洛比达法则求极限说明:当所求极限中的函数比较复杂时

6、,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。(1)型和型例1求解:离散型不能直接用洛必达法则,故考虑 原式例2求解:若直接用型洛必达法则1,则得=(不好办了,分母的次数反而增加)。为了避免分子求导数的复杂性,我们先用变量替换,令于是(型)例3 设函数,求解:原式(分母作变量替换)(用洛必达法则,分子、分母各求导数) (用积分中值定理:在0和之间)(2)型和型例1 求解:原式=例2 设,常数。求解: 原式 (型)用洛必达法则(3)“”型,“”型和“”型这类都是形式可化为,而都是“”型,按2的情形处理。例1 求解:令, 例2 设,常数,求解:先考虑它是“”型令

7、, (型)因此,于是,7 利用极限存在准则求极限例20 已知,求解:易证:数列单调递增,且有界(0<<2),由准则1极限存在,设 。对已知的递推公式 两边求极限,得: ,解得:或(不合题意,舍去)所以 。例21 解: 易见:因为 ,所以由准则2得: 。上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用定积分求极限等,由于不常用,这里不作介绍。8利用导数定义求极限例1例2 设,求解:原式=例3 设曲线与在原点相切,求解:由题设可知,于是9

8、利用定积分定义求极限例1求分析:如果还想用夹逼定理中的方法来考虑而,由此可见,无法再用夹逼定理,因此我们改用定积分定义来考虑解:例2 求解:而由夹逼定理可知,10递推数列的极限例1 设,证明存在,并求其值。解:, (几何平均值算术平均值)用数学归纳法可知时, 有界。又当时, ,则单调增加。根据准则1,存在把两边取极限,得,(舍去)得, 思考题 设,求11求极限的反问题例1 设,求和解:由题设可知,再由洛必达法则得例2 设在内可导,且满足,求。解:因此,由,可知则极限与连续的62个典型习题习题1 设,求 .解 记,则有,.另一方面 .因为 ,故 .利用两边夹定理,知,其中 .例如 .习题2 求

9、.解 ,即 .利用两边夹定理知.习题3求.解 习题4求 .解(变量替换法)令,则当时,于是, 原式.习题5 求.解(变量替换法)令,原式. 习题6 求 (型)。解:为了利用重要极限,对原式变形习题7 求. 解 原式.习题8求 . 解 由于.而 因此,.故 不存在。习题9研究下列极限 (1).原式,其中,. 上式极限等于0,即.(2).因为,, 所以 .(3). 原式.习题10计算.解 原式.习题11 .习题12 已知 ,求的值。解 首先,原式, ,而 .习题13 下列演算是否正确?. 习题14 求.解 原式.习题15 求 . 解 ,原式 = 0.习题16 证明 (为常数)。证 (令).习题17

10、 求 .解 原式.习题18 求 . 解 (连续性法)原式 .习题19 试证方程 (其中)至少有一个正根,并且它不大于.证 设,此初等函数在数轴上连续,在上必连续。 而 若,则就是方程的一个正根。若,则由零点存在定理可知在内至少存在一点,使.即故方程 至少有一正根,且不大于.习题21 求. 解 原式.习题20 设满足且 试证 证 取使得当时有即 亦即于是递推得 从而由两边夹准则有 习题22 用定义研究函数 的连续性。证 首先,当是连续的。同理,当也是连续的。而在分段点处 故习题23 求证 .证 ,而.由两边夹定理知,原式成立.习题24 设任取记 试证 存在,并求极限值。证 故由题设 由于故单调有

11、下界,故有极限。设由解出(舍去)。习题25 设 求解 显然有上界,有下界当 时即假设 则故单增。存在。设则由得即(舍去负值)。当时,有用完全类似的方法可证单减有下界,同理可证 习题26 设数列由下式给出 求 解 不是单调的,但单增,并以3为上界,故有极限。设单减,并以2为下界,设 在等式两边按奇偶取极限,得两个关系 ,解出由于的奇数列与偶数列的极限存在且相等,因此的极限存在,记于是故有解出(舍去负值)习题27 设试证 收敛,并求极限。证 显然假设则由,可解出(舍去 )。下面证明收敛于由于,递推可得 由两边夹可得故 习题28设试证(1)存在;(2)当时,当时,证 显然有又单减有下界。收敛。令在原

12、式两边取极限得由此可解出或当时,归纳假设则而,有 因此时即时)。当时,由的单减性便知即当时,即 (当时)。习题29 习题30 若收敛,则证 收敛,设故必有界。设因此而习题31 求 变量替换求极限法(为求有时可令而)习题32 求 (为自然数)解 令则 因此 习题33 求解 令且当时故 原式习题34 求解 先求令 则上式 故原式用等价无穷小替换求极限习题35 求解 记原式= 习题36 设与是等价无穷小,求证(1)(2)证 即其中故 (2) 习题37 设为自然数,试证使证 (分析:要证使即要证有根) 令,显然在上连续,于是记则又对函数应用介值定理,知使即存在使习题38 设证明使证 (分析:将结果变形

13、)记则于是 或 由介值定理知即 习题39 设且证使证 反证法。若不存在点使即均有连续,不妨设恒有于是此与矛盾。故使习题40 设且又证明至少有一点使证 故在上有最大值和最小值,使 于是 由介值定理,知使习题41 证明方程至少有一个小于1的正根。证 设显然但使即方程至少有一个小于1的正根存在。习题42 设连续,求解 故由于在=1,-1处连续,所以习题43 试证方程至少有一个实根。证 做函数 显然使即在内必有实根。习题44 求的连续区间。(解:先改写为分段函数,结论为:习题45 求为何值时,函数,在上处处连续。只需讨论分段点处的连续性:要在处连续,必有习题46 设,定义 求 解 有下界即有又,即单减

14、有下界,故有极限。设且有有(舍去负根)(注意:先证明极限的存在是必要的。)习题47(解: 单增有上界,可解出极限)习题48 设且证明使 证 若则取若则可取 则令必有且由零点定理知使即习题49 (选择题)设在内有定义,连续且有间断点,则(A) 必有间断点,(B) 必有间断点,(C) 必有间断点,(D) 必有间断点.解 选D((A) 因的值域可能很小。(B)反例 而无间断点。(C) 总有定义。习题50 证明方程至少有一个正根,且不超过证 设而如果则即为的零点.如果则由介值定理知使即为所求,故原命题成立.习题51 若函数可以达到最大值和最小值,求证 证 设则对任意有或有由的任意性,可知习题52 设且

15、恒大于零,证明在上连续.证 任取由于在处连续且大于使当时(若为左端点,则应为类似处理有可找到使当时有 取则当时,有故知在处连续。由的任意性,知在上连续.习题53 设 试讨论在处的连续性.解时,在处连续,时, 为的跳跃间断点(第一类间断点).当时为第二间断点。习题54 设函数 问当在处连续。 解即时,在处连续。习题55 求函数的间断点,并判定其类型.解 因当(为任一整数)时,是的间断点。再细分,当时, 不存在,故除处的任何整数都是的第二类间断点。因亦即是的第一类(可去)间断点.习题56 求函数的间断点并判定其类型。解 的分段点为 是的第一类(跳跃)间断点。当时,在点处,无意义,故是的间断点。因为是第一类(可去)间断点。显然都是极限为的第二类间断点。当时,在点时,没定义,故是的间断点。又不存在,故为第二类间断点。习题57 设函数且试证 证 因为连续,所以在上有界。又因为 所以当时,恒有取则存在自然数使得.记,则且 于是 下面估计上式右边三项的绝对值。 (1)=(2)因为在上有界,即使.故当时,恒有 (3)因为故使当时恒有综合(1),(2),(3)取,则当时,恒有 习题68 若和为连续周期函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论