版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级数学上全等三角形课时练习及答案第1课时 全等三角形一、选择题1如图,已知ABCDCB,且AB=DC,则DBC等于( )AA BDCB CABC DACB2已知ABCDEF,AB=2,AC=4,DEF的周长为偶数,则EF的长为( )A3 B4 C5 D 6ABCDE(第4题)AODBC(第1题)二、填空题3已知ABCDEF,A=50°,B=65°,DE=18,则F=_°,AB=_4如图,ABC绕点A旋转180°得到AED,则DE与BC的位置关系是_,数量关系是_ABECD(第5题)三、解答题5把ABC绕点A逆时针旋转,边AB旋转到AD,得到AD
2、E,用符号“”表示图中与ABC全等的三角形,并写出它们的对应边和对应角6如图,把ABC沿BC方向平移,得到DEF求证:ACDF。ABFEDC(第6题)7如图,ACFADE,AD=9,AE=4,求DF的长ACFED(第7题)第2课时 三角形全等的条件(1)一、选择题1 如果ABC的三边长分别为3,5,7,DEF的三边长分别为3,3x2,2x1,若这两个三角形全等,则x等于( )A B3 C4 D5二、填空题2如图,已知AC=DB,要使ABCDCB,还需知道的一个条件是_ADBC(第2题)AFECDB(第3题)ABC(第4题)3已知AC=FD,BC=ED,点B,D,C,E在一条直线上,要利用“SS
3、S”,还需添加条件_,得ACBFDE4如图ABC中,AB=AC,现想利用证三角形全等证明B=C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线应是_二、解答题5 如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,AE=FCDCEFBA(第5题)求证:ABCFDE(第6题)ABCD6如图,AB=AC,BD=CD,那么B与C是否相等?为什么?DCEBA(第7题)7如图,AB=AC,AD = AE,CD=BE求证:DAB=EACABEDC(第1题)第3课时 三角形全等的条件(2)ACDBEF(第2题)一、填空题1如图,ABAC,如果根据“SAS”使ABEACD,那么需添加条件_
4、2如图,ABCD,BCAD,AB=CD,BE=DF,图中全等三角形有_对3下列命题:腰和顶角对应相等的两个等腰三角形全等;两条直角边对应相等的两个直角三角形全等;有两边和一角对应相等的两个三角形全等;等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形其中正确的命题有_(第4题)ABCDE二、解答题4 已知:如图,C是AB的中点,ADCE,AD=CE求证:ADCCEBDCFBAE(第5题)5 如图, A,C,D,B在同一条直线上,AE=BF,AD=BC,AEBF.求证:FDECABCED(第6题)6已知:如图,ACBD,BC=CE,AC=DC求证:B+D=90°;第4课时 三角形
5、全等的条件(3)一、选择题(第3题)1下列说法正确的是( )ABFEDC(第2题)A有三个角对应相等的两个三角形全等B有一个角和两条边对应相等的两个三角形全等C有两个角和它们夹边对应相等的两个三角形全等D面积相等的两个三角形全等二、填空题2如图,BDEF,BCEF, 要证ABCDEF,(1)若以“SAS”为依据,还缺条件 ;(2)若以“ASA”为依据,还缺条件 ABCDO(第4题)3如图,在ABC中,BDEC,ADBAEC,BC,则CAE 三、解答题4已知:如图,ABCD,OA=OC求证:OB=ODAECBD(第5题)5已知:如图,ACCE,AC=CE,ABC=CDE=90°,求证:
6、BD=AB+EDOEADBC(第6题)6已知:如图,AB=AD,BO=DO,求证:AE=AC第5课时 三角形全等的条件(4)一、选择题1已知ABC的六个元素,则下面甲、乙、丙三个三角形中和ABC全等的图形是( )A甲和乙 B乙和丙 C只有乙 D只有丙二、填空题2如图,已知A=D,ABC=DCB,AB=6,则DC= ABEDCF(第3题)3如图,已知A=C,BEDF,若要用“AAS”证ABECDF,则还需添加的一个条件是 (只要填一个即可)DCBA(第2题)ADBCo(第4题)三、解答题4已知:如图,AB=CD,AC=BD,写出图中所有全等三角形,并注明理由5如图,如果ACEF,那么根据所给的数
7、据信息,图中的两个三角形全等吗?请说明理由(第5题)6如图,已知12,34,ECAD,求证:ABBE(第6题)第6课时 三角形全等的条件(5)一、选择题1使两个直角三角形全等的条件是( )A一个锐角对应相等 B两个锐角对应相等C一条边对应相等 D。一直角边和斜边对应相等二、填空题2如图,BE和CF是ABC的高,它们相交于点O,且BE=CD,则图中有 对全等三角形,其中能根据“HL”来判定三角形全等的有 对ABCED(第2题)O3如图,有两个长度相同的滑梯(即BCEF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则ABCDFE_度(第3题)ABDFCE(第4题)三、解答题4已知:如图,
8、AC=DF,BF=CE,ABBF,DEBE,垂足分别为B,E求证:AB=DE(第5题)ABCDEF5如图,ABC中,D是BC边的中点, AD平分BAC,DEAB于E,DFAC于F.求证:(1)DE= DF;(2)B =C6如图,AD为ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CDABCDEF(第6题)求证:BEAC第7课时 三角形全等的条件(6)一、选择题1下列条件中,不一定能使两个三角形全等的是 ( )ACBED(第2题)A三边对应相等 B两角和其中一角的对边对应相等C两边和其中一边的对角对应相等 D两边和它们的夹角对应相等2如图,E点在AB上,ACAD,BCBD,
9、则全等三角形的对数有( ) A1 B2 C3 D43有下列命题:两边及第三边上的高对应相等的两个三角形全等;两边及其中一边上的中线对应相等的两个三角形全等;两边及第三边上的高对应相等的两个锐角三角形全等;有锐角为30°的两直角三角形,有一边对应相等,则这两个三角形全等其中正确的是( )A B C DCAEBFD二、解答题4已知AC=BD,AF=BE,AEAD,FDAD求证:CE=DFDECBA(第5题)(第4题)5已知:ABC中,AD是BC边上的中线,延长AD到E,使DE=AD猜想AB与CE的大小及位置关系,并证明你的结论(第6题)6如图,在ABC中,ABAC,D、E、F分别在AB、
10、BC、AC上,且BDCE,DEFB,图中是否存在和BDE全等的三角形?并证明第8课时 角平分线的性质(1)一、选择题1用尺规作已知角的平分线的理论依据是( )ASAS BAAS CSSS DASA2如图,OP平分AOB, PDOA,PEOB,垂足分别为D,E,下列结论错误的是( )BDCA(第3题)BAOEPD(第2题)APDPE BODOE CDPOEPO DPDOD二、填空题3如图,在ABC中,C90°,AD是BAC的角平分线,若BC5,BD3,则点D到AB的距离为_三、解答题MACBEOFDG(第4题)4已知:如图,AM是BAC的平分线,O是AM上一点,过点O分别作AB,AC的
11、垂线,垂足为F,D,且分别交AC、AB于点G,E求证:OE=OG5如图,AD平分BAC,DEAB于点E,DFAC于点F,且BD=CDDACEBF求证:BE=CF6如图,ABC中,C=90°,AD是ABC的角平分线,DEAB于E,AD=BD(1)求证:AC =BE;(2)求B的度数。EACDB(第6题)第9课时 角平分线的性质 (2)一、选择题1三角形中到三边距离相等的点是( )A三条边的垂直平分线的交点 B三条高的交点C三条中线的交点 D三条角平分线的交点2如图,ABC中,AB=AC,AD是ABC的角平分线,DEAB于点E,DFAC于点F,有下面四个结论:DA平分EDF;AE=AF;
12、AD上的点到B,C两点的距离相等;到AE,AF的距离相等的点到DE,DF的距离也相等其中正确的结论有( )DEAFBC(第2题)A1个 B2个 C3个 D4个EFCBAD(第3题)二、填空题3如图,在ABC中,AD为BAC的平分线,DEAB于E,DFAC于F,ABC面积是28 cm2,AB=20cm,AC=8cm,则DE的长为_ cmEFADBC第4题三、解答题4已知:如图,BD=CD,CFAB于点F,BEAC于点E求证:AD平分BAC5如图,ADBC,DAB的平分线与CBA的平分线交于点P,过点P的直线垂直于AD,垂足为点D,交BC于点CABCDP(第5题)试问:(1)点P是线段CD的中点吗
13、?为什么?(2)线段AD与线段BC的和等于图中哪一条线段的长度?为什么?小结与思考(1)一、选择题1 不能说明两个三角形全等的条件是( )A三边对应相等 B两边及其夹角对应相等C二角和一边对应相等 D两边和一角对应相等2已知ABCDEF,A=50°,B=75°,则F的大小为( )A 50° B55° C65° D75°3 如图,ABAD,BCDC,则图中全等三角形共有( )A2对 B3对 C4对 D5对CADB(第5题)ACD(第3题)BEABCDE(第6题)F4在RtABC中,C=90°,AD平分BAC交BC于D,若BC=
14、20,且BDDC=32,则D到AB边的距离是( )A12 B10 C8 D6二、填空题5 若ABCDEF,ABC的周长为100,AB30,DF25,则BC长为 6若ABCABC,AB3,A30°,则AB ,A °7如图,BD90°,要使ABCADC,还要添加条件 (只要写出一种情况)8 如图,D在AB上,AC,DF交于E,ABFC,DEEF,AB15,CF8,则BD (第9题)三、解答题9如图,点D,E在ABC的BC边上,ABAC,BC,要说明ABEACD,只要再补充一个条件,问:应补充什么条件?(注意:仅限图中已有字母与线段,至少写出4个)(第10题)10如图,
15、在ABC中,ABAC,且ABAC,点E在AC上,点D在BA的延长线上,ADAE求证:(1)ADCAEB;(2)BE=CD(第11题)11如图,CDAB,垂足为D,BEAC,垂足为E,BE,CD交于点O,且AO平分BAC你能说明OBOC吗?(第12题)12一个风筝如图,两翼ABAC,横骨BEAC于E,CFAB于F问其中横骨AD能平分BAC吗?为什么?、答案与提示第1课时 全等三角形1D 2B 365;18 4平行;相等 5ADEABC,对应边:AD=AB,DE=BC,AE=AC;对应角:D =B,DAE=BAC,E =C 6略 75 第2课时 三角形全等的条件(1)1B 2AB=DC 3AB=F
16、E,FDE 4取BC边的中点D,连结AD 5证AC=EF 6连接AD 7证ADCABE 第3课时 三角形全等的条件(2)1AE=AD 23 3 4略 5证ACEBDF 6(1)先证ABCDEC,可得D =A,因为B+A=90°,所以B+D=90°;第4课时 三角形全等的条件(3)1C 2(1)AB=DE (2)ACB=F 3BAD 4略 5证ABCCDE 6连接AO第5课时 三角形全等的条件(4)1B 26 3AB=CD或BE=DF 4ABCDCB(SSS),ABDDCA(SSS),ABODCO(AAS)或(ASA) 5全等,用“AAS”或“ASA”可以证明 6证ABDEB
17、C第6课时 三角形全等的条件(5)1D 25,4 390 4利用“HL”证RtABC RtDEF 5(1)证明略;(2)证BDECDF 6证BDFADC,得BFD=C,由BFD+FBD=90°,得C+FBD=90°第7课时 三角形全等的条件(6)1C 2C 3D 4略 5相等,平行,利用“SAS”证明ABDECD 6存在CEFBDE利用“ASA”证明 第8课时 角平分线的性质(1)1C 2D 32 4利用角平分线的性质可得OD=OF,然后证明ODGOFE 5证BDECDF 6(1)略;(2)30° 第8课时 角平分线的性质(2)1D 2D 32 4证BDFCDE,得DF=DE 5(1)点P是线段CD的中点;(2)AD+BC=AB 小结与思考(1)1D 2B 3B 4C 545 63,30° 7ABAD或BCCD等 87 9(1)BECD;(2)BAECAD;(3)AEBADC;(4)BDCE;(5)BADCAE;(6)ADBAEC 10(1)由SAS知ADCAEB;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论