大众双离合变速箱DSG的维修_第1页
大众双离合变速箱DSG的维修_第2页
大众双离合变速箱DSG的维修_第3页
大众双离合变速箱DSG的维修_第4页
大众双离合变速箱DSG的维修_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大众双离合变速箱DSG的维修 (直接换档变速箱DSG)  1、DSG壳体内部有一个机电模块,该模块包含控制单元,阀体和电磁阀(见图1、2)、这是该变速箱的控制中心,正是他控制K1和K2离合器的工作。  图1图22、发动机的扭矩由K1和K2离合器分别传递到相应的输入轴上。K1离合器(K1 CLUTCH)和1号输入轴(INPUT SHAFT1)产生1,3,5档。K2离合器(K2 CLUTCH)和2号输入轴(INPUT SHAFT2)产生2,4,6档(参看图3和4),现在你很快就明白K1和K2在1档和2档时是交替工作的。

2、  图3图43、输出轴的配置同输入轴稍微不一样,区别在于1号输入轴由1,2,3,4档齿轮组成,2号输入轴(OUT PUT SHAFT 2)由2,5,空档,6档齿轮组成(见图5,6)。  图5图64、既然机电单元是控制中心,那么我们就从控制该变速箱的11个电磁阀谈起吧(见图7,8)。   图7图85、档位切换时,N215(控制K1)和N216(控制K2)各自控制相应离合器(K1和K2)进入或退出工作,如图8。 6、N88,N89,N90,N91是换档电磁阀。N88负责1,5档,N89负责3档和空档

3、,N90负责2,6档,N91负责4档和倒档。   7、为了实现每个换档电磁阀控制两个档位的功能,系统在阀体内使用多路转换阀(MULTIPLEXER VALVE),该阀由N92电磁阀操控(见图8中3点钟位置),从而引导不同档位的换档电磁阀压力至相应的换档滑套上(同步套)。该多路转换阀在设计上同41TE的电磁阀切换阀相似(L/R电磁阀)的控制TCC的锁止。8、当多路转换电磁阀OFF时,能实现1档,3档,6档和倒档,当多路转换电磁阀ON时,能实现2档,4档,6档和空档。  9、现在我们讨论乘下的四个电磁阀。N217为主压力调节电磁阀,N218控制离合

4、器冷却压力,其余2个为安全控制电磁阀,N233控制至电磁阀N215,N88,N89的油路,N371控制至电磁阀N216,N90,N91的油路。这两个电磁阀用来隔离主油路同其他油路,换句话说,当在2档,4档,6档发生故障时,N371切断到N216,N90,N91的油路,1档和3档成为安全档位; 当在1档,3档,5档发生故障时,N233切断到N215,N88,N89的油路,2档成为安全档位。丰田自动变速箱的故障诊断与维修(上)       “车到山前必有路,有路必有丰田车”,这是丰田汽车公司广为人知的名言,各型丰田汽车经济、适用且便于维修

5、的优点深受广大汽车消费者喜爱,这使得丰田汽车在我国的汽车保有量呈稳步增长的趋势。在自动变速箱方面,丰田汽车通常采用AW公司生产的自动变速箱,为方便大家理解、掌握和维修,从本期开始,我们就针对丰田汽车自动变速箱的结构特点、改进措施以及故障诊断方法等进行详细的分析和说明。 一、丰田车系自动变速箱的型号及结构特点:  (一)、变速箱型号        在丰田汽车上,采用的自动变速箱形式较多,其型号主要有:A130L、A131(L)、A132(L)、A140E/L、A141E、A142E、A240E/L、A241E/L/H

6、、A340E/H/F、A341E、A342E、A540E/H、A541E、A650E、A750E/F、A761E、A440F、A442F、U140E/F、U151E/F、U241E、A245E、A246E、U341E、U540E、U541E等。        丰田自动变速箱的型号与通用自动变速箱的型号一样,都具有比较特定的含义,了解和掌握这些特定的含义,我们便可以先从型号上知道变速箱的一些特点,从而为我们后面的维修工作打下基础。下面以“A541E”为例,对丰田自动变速箱型号的含义进行说明: A代表自动变速箱 

7、60; 5驱动形式:1、2、5-前驱,3、6、7-后驱 4前进挡个数:3-3前速,4-4前速,5-5前速 1变速箱的生产序号E类型:电控带锁止,无“E”-全液控 ;L-变矩器带锁止,H或F-四轮驱动      特别说明:上述各型自动变速箱中,A340H、A340F、A540H型,其后面均省略了“E”,它们都是电控自动变速箱,并带锁止离合器;A241H、A440F、A442F型自动变速箱,其后均省略了“L”,但均带有锁止离合器。对于改进后的自动变速箱,只增加了锁止离合器或驱动轮的个数,其余未做改动,只在原型

8、号后加注“L”、“F”或“H”,原型号不变。  (二)结构特点1、丰田自动变速箱是最早采用电控系统的自动变速箱之一,因此其纯液控变速箱较少,现在运用较多的一般都是半电控或全电控自动变速箱,半电控自动变速箱都由一根节气门拉线调节主油压(图一),这种拉线只调油压,不调换挡点。2、在丰田汽车的自动变速箱中,行星齿轮机构大多采用辛普森行星齿轮机构,其特点是共用太阳轮,整体结构比较简单,这有利于初学者理解和分析变速箱的传动路线,并掌握其维修方法。 3、丰田四速自动变速箱都由一个超速行星排和一个辛普森行星排组成,一般后驱变速器(如:A340E、A341E等)的超速行星排一般装在辛普森齿

9、轮机构的前边,而前驱变速器(如:A140E、A540E等)的超速行星排则装在变速箱的尾部(辛普森行星排的后边)。4、对于比较老款的丰田电控自动变速箱,多数阀体上有三个电磁阀,其中包括两个换挡电磁阀和一个锁止电磁阀。当变速箱出现故障进入安全应急模式运行时,电控系统通常将变速箱锁定在四挡,即变速箱锁四挡。 5、丰田自动变速箱在机械构造方面,一般都设计有2挡手动带式制动器(图二),因此当变速杆置于手动2挡时,车辆都具有发动机制动作用。6、丰田自动变速箱的变矩器都具有锁止功能。图一  电控波箱的节气门拉线只调节主油压图二  设计的手动2挡制动带起发动机

10、制动作用二、施力装置和传动路线分析:      丰田自动变速箱型号较多,但行星齿轮机构与传动线路大体同,这里以内部结构较典型的A340E自动变速箱为例,对其施力装置和传动路线进行说明。该变速箱的行星齿轮机构采用一个单排行星齿轮机构(即超速行星排)和一个辛普森行星排组成,在辛普森行星排中,有一个共用太阳轮,太阳轮和前排齿圈可分别或同时作为动力输入元件,前排行星架与后排齿圈连为一体作为输出元件,后排行星架可独立运动,并与2号单向离合器、低倒挡制动器连接,在低倒挡时制动形成低速挡和倒挡。其动力传递示意图如图三(元件说明:1-超速挡制动器2-超速挡离合

11、器3-超速挡单向离合器4-手动2挡带式制动器5-高速挡/倒挡离合器6-前进挡离合器7-二挡制动器8-1号单向离合器  9-低速挡/倒挡制动器  10-2号单向离合器)。 各挡施力装置作用表如下: 图三  A340E动力传递路线示意图A340E自动变速箱各挡施力装置作用表 元件说明:C0超速挡离合器  C1前进挡离合器  C2直接挡离合器   B0超速挡制动器  B1手动2挡带式制动器  B22挡制动器

12、60; B3低倒挡制动器  F0超速挡单向离合器  F11号单向离合器  F22号单向离合器       从以上元件施力装置工作表可以看出,该款变速箱在结构上设计有发动机制动作用,当变速杆处于手动2挡时,手动2挡带式制动器参与工作,固定辛普森行星排的共用太阳轮,所以当车辆下长坡或陡坡时,将变速杆置于手动2挡滑行可产生发动机制动作用,从而增强车辆的制动效果。而当变速杆处于“D”位时,手动2挡带式制动器不参与工作,因车辆下坡时驱动轮的转速比输入转速快,1号单向离合器打滑,所以此时

13、车辆无发动机制动作用。 下面以手动2挡的2挡为例,分析其传动路线为:       变速杆置于手动2挡,动力由输入轴传入超速行星排的行星架,由于2挡时超速挡离合器接合,超速挡单向离合器锁止,将超速行星排连为一个整体,因超速行星排的齿圈与前进挡和直接挡离合器毂连为一体,此时前进挡离合器接合,动力由前进挡离合器输入到辛普森行星齿轮机构的前排齿圈,又因手动2挡带式制动器(当车辆滑行时产生发动机制动作用)与二挡制动器同时参与工作,1号单向离合器锁止,固定共用太阳轮,因此动力由前排行星架经传动轴输出到主减速器。 三、新旧款变速

14、箱的改进说明:        前面我们已经讲到,丰田汽车主要采用AW公司生产的自动变速箱,而AW公司是世界上较大的汽车自动变速箱专业生产厂家之一,经过多年的发展,其自动变速箱主要有以下几个方面的改进:1、在电控变速箱问世前,丰田液控自动变速箱较少,主要有:A130L、A131L、A132L、A140L等,这种液控变速箱的变矩器都具有锁止功能,主要应用在80年代以前的老款丰田车型上,现在已被淘汰。2、到1982年,电控自动变速箱最先在丰田公司问世,并应用在皇冠轿车上;1983年,丰田A140E电控变速箱紧接着问世,并装在四缸佳美轿车上,

15、它把自动变速箱的发展推上了一个新高点。这款变速箱具有非常高的实用价值,直到现在还应用在排量较小的丰田佳美轿车上。 3、对于老款的丰田电控自动变速箱(如:A140E、A340E等),一般只有三个电磁阀,其中一个负责变矩器锁止,另外两个负责变速箱的换挡工作,变速箱的主油压则由一根节气门拉线来调节。 4、在机械构造方面,老款自动变速箱的ATF油与差速器油是分开的,差速器与变速箱主体各有一个通气孔。为便于波箱的维修和保养,后期自动变速箱将差速器油改为波箱油,在结构设计上去掉了分隔两种油用的双面油封,并将通气孔连为一体(图四),这就避免了由于双面油封损坏造成两种油混在一起而损坏变速箱

16、的故障。5、90年代后期的丰田自动变速箱(如:A341E、A541E等),在电控系统方面做出了一些改进,主要是设计了一个EPC电磁阀,对变速箱的蓄压器背压进行调节,从而改善了车辆的换挡平顺性。但它对变速箱的主油压没有影响,所以这些变速箱仍设计有一根节气门拉线来调节主油压。  6、2000年以后的自动变速箱(如:U140F、U540E等),都为全电控自动变速箱。在电控系统方面,不仅设计了一个专门的EPC电磁阀来控制主油压,还设计了一个或多个换挡平顺阀,更好地改善了车辆的换挡平顺性和乘座舒适性。图四  差速器与变速箱主体通气孔连为一连图五  A34

17、0E超速挡单向离合器四、工作元件的正确检测:  1、超速挡离合器的检查:      丰田自动变速箱的超速挡离合器在1、2、3挡及倒挡都要参与工作,若出现磨损或烧蚀,在超速挡单向离合器打滑时会造成变速箱没有任何挡位,因此维修时应注意检查超速挡离合器的静态油压是否符合标准。对于丰田前驱自动变速箱,其超速挡离合器一般装在变速箱尾部,较易出现离合器鼓泄压现象,维修时还应注意对其动态油压进行检测(有条件时可在总成测试机上进行测试。)2、超速挡单向离合器的检查:       从上述施力装

18、置作用表中可以看出,超速挡单向离合器(图五)负责防止超速行星排中的行星架左转,若损坏后打滑,则它负责的工作改由超速挡离合器负责,变速箱上所有的挡都还有,但因为超速挡离合器大部分只有23张摩擦片(个别的只有1张摩擦片),当车辆负荷急剧增加时(如:起步和急加速时),会出现超速挡离合器轻微打滑,若不及时更换超速挡单向离合器,会造成超速挡离合器连续烧蚀的现象。所以在维修丰田自动变速箱时,应注意检查超速挡单向离合器是否打滑,可先观察其磨损的状况,若磨损严重,应直接更换;若未发现明显磨损,也应进行加负荷的测试和检查。  3、电磁阀的检查: 图六  EPC和和TCC电

19、磁阀的阻值较小      丰田电控自动变速箱一般有35个电磁阀,其中直径比较小的两个是换挡电磁阀,负责“D”位上的4个前进挡,直径比较大的是EPC和TCC电磁阀,分别负责油压调节和变矩器的锁止工作。换挡电磁阀一般都是常闭式通断电磁阀,阻值为12.5左右,可采用12V电压直接进行动作测试;EPC和TCC电磁阀一般为脉冲电磁阀(图六),其阻值约为5,不能直接用12V电压进行动作测试,否则可能烧坏电磁阀,维修时可采用串接一个灯泡或一个阻值较小的电阻等方式进行动作测试。 丰田自动变速箱的故障诊断与维修(下) 五、常见故障分析 1、车

20、辆没有前进挡或倒挡       在丰田自动变速箱中,车辆出现没有前进挡或倒挡时比较容易确定故障原因,可先通过基本检查排除油泵、油压、液力变矩器等产生故障的可能。通过检测分析如果判定为变速箱内部机械元件故障,则需要拆解自动变速箱总成,在拆卸前应先分析一下可能的故障原因,下面以A340E为例进行说明。        前进挡不能行驶的可能原因是:超速挡离合器、超速挡单向离合器或前进挡离合器工作不正常;倒挡不能行驶的可能原因是:超速挡离合器、超速挡单向离合器、低倒挡制动器或直接挡离合

21、器工作不正常。一般离合器损坏常见的原因有:  离合器摩擦片烧蚀或脱落;  活塞密封圈或活塞损坏;  离合器壳体损坏泄压;  输入轴油道堵塞。      这些故障在拆下自动变速箱后进行解体检查,很容易发现变速箱的故障部位,大家在维修过程中根据实际需要进行更换或维修就可以了。值得注意的是:对于烧片的自动变速箱,大家应仔细检查、分析烧片的原因,特别应对离合器的油道(包括阀体、轴和壳体上的油道)及变速箱散热器进行分析、观察和清洗,以排除造成离合器片烧蚀的根本原因,防止更换摩

22、擦片后再次出现烧片。 2、冷车进挡冲击        丰田自动变速箱出现进挡冲击的故障现象比较常见,一般都是由于油压调节故障造成,特别是冷车时出现进挡冲击的机率较大。      案例1:一辆1993年产丰田LS400轿车,搭载A341E自动变速箱,行驶里程19.2万公里。该车因不走车在一家维修厂进行了自动变速箱大修,维修后出现冷车时,尤其是早晨第一次起动车,将换挡杆挂入D挡,自动变速箱迟滞时间过长,然后内部发出异常的撞击声,车辆才可起步行驶。热车挂挡起步时,自动变速箱接合正常

23、,无撞击声。       虽然自动变速箱进行了大修,检查还应从基础开始,首先检查自动变速箱油面及油质都正常,检查节气门接线调整也正常。对自动变速箱进行控制单元诊断,结果无故障码输出,由此分析可能的故障原因有以下几种情况: (1)自动变速箱离合器间隙过大,冷车时自动变速箱油的粘度大,离合器接合时间延长,造成进挡冲击大;  (2)储压器故障,储压器的作用是使离合器接合时动作柔和,损坏后也能造成挂挡冲击;  (3)阀体故障。换挡阀、调节阀、转换阀等阀组发卡,冷车时自动变速箱油的粘度大,滑阀动作迟缓,造成冲击。&

24、#160; 图一   阀体滑阀及滑孔轻微拉伤       本着从简到繁的维修原则,先就车将阀体拆下解体,仔细观察发现内部较脏(原修理厂未解体清洗),其中两个滑阀及滑孔有轻微拉伤痕迹(图一),分析其在冷车时有卡滞现象。将拉伤的滑阀沾着自动变速器油在阀孔内进行轻轻研磨,使其动作顺畅,再清洗干净后装配试车,故障排除。  3、热车后行驶无力       案例2:一辆丰田皇冠3.0型轿车,搭载A340E自动变速箱,行驶里程26万公里,该车冷车时动力尚可,热

25、车时行驶无力,一个小台阶都要加很大的油门才能爬上。在起步时,也要加大油门,才可慢慢起步。       从故障现象上分析,故障应由液压油泄漏引起。为进一步判断故障,可通过对自动变速箱做失速、液压等试验来确定具体的故障部位,具体操作如下:       起动发动机,让车辆上路运行,待发动机达到正常工作温度,自动变速箱油温达到7080后,检查自动变速箱油面正常,调整发动机怠速转速约为800r/min;拉紧手制动器,并用垫木垫住4个车轮。 (1)失速试验:左脚踩住制动踏板,起

26、动发动机,将自动变速箱操纵杆挂入D挡,然后用右脚将油门快速踏到底(不能超过5秒),读取发动机转速。标准值为2350±150r/min,而该车却达到2800r/min;同样,试验R挡的失速转速也为2800r/min。D、R挡的失速转速均比标准值高的原因可判定为自动变速箱管路压力过低,或O/D单向离合器故障。  (2)液压试验:将油压表接到自动变速箱主油道测试孔上,起动发动机,分别记录下D、R挡在怠速和失速时的油压值如下表: 油压值图二   油量油泵齿端隙       从以上液压试验测量值

27、可知,该车实测油压均比标准油压低。根据失速试验和液压试验的结果,结合车辆道路试验的实际情况,可初步判定该车变速箱油泵存在泄压故障。将变速箱抬下,首先测量检查油泵的各个间隙,发现油泵的体隙和齿隙均较大,但未超出使用极限,但油泵齿的端隙(图二)达到了0.40mm,而标准值为0.050.20mm,极限间隙为0.30mm,因此端隙已超过了其使用极限,这样就可确定故障是由油泵磨损引起的。当车辆在冷车时,由于自动变速箱油的粘度大、泄漏少,油泵产生的工作油压尚能满足要求,但热车后自动变速箱油的粘度变小、泄漏增加,油泵产生的工作油压降低,因而出现行驶无力现象。更换油泵后,故障排除。4、解体维修后在D挡和2挡时

28、不走车,手动1挡正常(出现这种故障现象,多数是由于人为装配错误故障造成。 )      案例3:一辆丰田佳美3.0轿车,装用A540E自动变速箱,行驶里程为12.7万公里。该车因低倒挡制动器摩擦片烧蚀后无倒挡,在某维修厂进行了大修后,倒挡正常,但又出现了D挡和2挡时不走车的故障。        因该车在维修前无倒挡但有前进挡,经维修后故障刚好相反,出现了有倒挡而无前进挡的故障,因此可判定故障出在变速器内部控制执行元件与传动机构装配错误。解体检查变速箱,发现2号单向离合器的方向

29、恰好装反了(光面应朝前装配,图三)。将2号单向离合器重新安装好,故障排除。 图三   2号单向离合器光面应朝前装配5、热车后有时无挡       案例4:一辆凌志LS400轿车,装备了丰田A341E自动变速箱,行驶里程为32.5万公里。该车检修发动机后,连续行驶了大约4小时后突然出现加速时发动机空转,无驱动车轮的感觉。      将汽车拖回厂后试车,车辆又能行驶,检查变速箱油时发现油位偏低,加足油后试车,发现换挡情况和传动情况都没有多大问题,经过

30、几个小时的连续行驶,均未出现无挡情况,用户只好将车开走,但第三天又出现行驶中无挡现象,当维修人员赶到现场时(大约间隔1.5小时)又有挡了,且能正常行驶。据驾驶员反应,在行驶中突然出现滑挡的 车靠边停下,挂入任何行驶挡位均无驱动反应。      因为能够行驶时,各挡位接合及换挡情况都良好,故可排除变速箱内部出现机械故障的可能性。提取自诊断系统故障代码,无故障码存贮。于是分析故障应在液压控制系统的一些重要阀上(如:安全阀、主油路压力调节阀等)存在偶尔发卡现象,因此决定拆下阀体进行清洗检查。在放油时发现变速箱油已经变质,拆开油底壳,发现油底

31、壳内已有较多的油泥、杂质等,滤清器内也覆盖了很多杂质。解体清洗并研磨滑阀,使其运动灵活,然后更换滤清器后装车路试,再无上述故障现象发生。        故障总结:长时间没有更换自动变速箱油及滤清器,在汽车连续行驶后,变速器内部温度升高,使得阀体壁与滑阀之间的配合间隙发生变化。另外,在高速行驶时发动机转速较高,相应地油泵转子转动的速度也较高,在吸油口处产生的吸力也就很大,一些较细颗粒状杂质难免被吸入油泵而进入液压控制系统,并极可能造成滑阀卡滞现象。在停一段时间后变速箱冷却下来,卡滞部位的间隙正常了,重新起动发动机时突然建立的油

32、压会对滑阀产生冲击作用,这样卡滞的阀又能活动,因此汽车又能正常行驶一段时间。六、特殊故障分析        案例5:一辆丰田LS400轿车,搭载A342E自动变速箱,在一家修理厂更换了曲轴后油封,车辆出现了上坡时动力不足的现象。        从故障现象上分析,修理厂只更换了曲轴后油封,并没有对变速箱进行解体,怎么会造成车辆动力不足呢?考虑到车辆在更换了曲轴后油封时,拆装过自动变速器,可能是由于自动变速箱上的线路、插接头或电磁阀、传感器等受到了损伤。因此,首先应查询自动变速箱

33、控制单元的故障存贮,打开点火开关,超速挡O/D开关置于接通位置,将诊断插座中的TE1和E1端子短接,从仪表上的O/D OFF灯读取变速箱故障码为64,含义为3号电磁阀电路短路或断路故障,此电磁阀为线性脉冲式电磁阀,用于操纵锁止离合器的分离和接合。检查3号电磁阀线束无断、折处,再检查电磁阀插接器,发现插接器的锁销已断裂,插接头松动,将插接头拔下,用万用表测量电磁阀线圈的电阻为3.6,符合标准,由此说明3号电磁阀本身没有损坏。将电磁阀插接器重新插牢,并用胶带固定,试车故障彻底排除。       故障总结:由于电磁阀插接器松动,引起3号电磁阀接触不良,从而造成上述故障现象,若插接器严重松动,其它几个电磁阀也会发生故障,故障现象也就不同。在实际维修过程中,我们经常发现一些维修人员将电磁阀插接器锁销损坏后,不进行任何处理,这样在插接器松动时易造成车辆各种故障,特别是有些插接头时紧时松,故障时隐时现,会给诊断造成很大麻烦,所以在维修时一定要注意这些问题。七、维修装配注意事项  1、丰田公司生产的后驱自动变速箱,超速挡制动器的油缸是高速挡/倒挡离合器的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论