版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3.2 1.3.2 奇偶性奇偶性 第二课时第二课时 函数奇偶性的性质函数奇偶性的性质问题提出问题提出 1.1.奇函数、偶函数的定义分别是什么?奇函数、偶函数的定义分别是什么? 2.2.奇函数和偶函数的定义域、图象分别有奇函数和偶函数的定义域、图象分别有何特征?何特征? 3. 3.函数的奇偶性有那些基本性质?函数的奇偶性有那些基本性质?知识探究(一)知识探究(一)思考思考1:1:是否存在函数是否存在函数f(x)f(x)既是奇函数又是偶既是奇函数又是偶函数?若存在,这样的函数有何特征?函数?若存在,这样的函数有何特征?f(x)=0f(x)=0思考思考2:2:一个函数就奇偶性而言有哪几种可能一个
2、函数就奇偶性而言有哪几种可能情形?情形?思考思考3:3:若若f(x)f(x)是定义在是定义在R R上的奇函数,那么上的奇函数,那么 f(0)f(0)的值如何?的值如何?f(0)=0f(0)=0思考思考4:4:如果函数如果函数f(x)f(x)具有奇偶性具有奇偶性,a,a为非零常为非零常数,那么函数数,那么函数af(x)af(x),f(ax)f(ax)的奇偶性如何?的奇偶性如何?思考思考5:5:常数函数常数函数 具有奇偶性具有奇偶性吗?吗?( )(0)f xa a思考思考1:1:如果函数如果函数f(x)f(x)和和g(x)g(x)都是奇函数,那都是奇函数,那么么f(x) + g(x)f(x) +
3、g(x),f(x) - g(x)f(x) - g(x), f(x)f(x)g(x) g(x) ,f(x)f(x)g (x)g (x)的奇偶性如何?的奇偶性如何?知识探究(二)知识探究(二)思考思考2:2:如果如果f(x)f(x)是定义在是定义在R R上的任意一个函数,上的任意一个函数,那么那么f(x) + f(-x)f(x) + f(-x),f(x) - f(-x)f(x) - f(-x)奇偶性如奇偶性如何?何? f(x) + f(-x)f(x) + f(-x)是偶函数是偶函数f(x) - f(-x)f(x) - f(-x)是奇函数是奇函数思考思考3:3:二次函数二次函数 是偶函是偶函数的条件
4、是什么?数的条件是什么? 一次函数一次函数 是奇函数的条是奇函数的条件是什么?件是什么?2( )f xaxbxc( )f xkxbb=0b=0理论迁移理论迁移例例1 1 已知已知f(x)f(x)是奇函数,且当是奇函数,且当 时,时, , ,求当求当 时时f(x)f(x)的解析的解析式式. .0 x 2( )3f xxx0 x 2( )3 (0)f xxx x 例例2 2 设函数设函数 ,已知,已知 是是偶函数,求实数偶函数,求实数m m的值的值. .2( )23f xxmx(1)f xm=-4m=-4例例3 3 已知已知f(x)f(x)是定义在是定义在R R上的奇函数,且对任上的奇函数,且对任意实数意实数x x都有都有 ,若当,若当 时,时, , ,求求 的值的值. .(3)( )0f xf x 3, 2x ( )2f xx1( )2f1( )52f例例4 4 已知已知f(x)f(x)是定义在是定义在R R上的偶函数,且在上的偶函数,且在 上是增函数,上是增函数,f(-2)=0f(-2)=0,求不等式,求不等式 的解集的解集. .(,0( )0 x f x( 2,0)(2,)作业作业
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规综合检测试卷B卷含答案
- 2024年垃圾焚烧发电设备项目资金申请报告代可行性研究报告
- 四年级数学(简便运算)计算题专项练习与答案
- 2024年期货船租赁协议条款汇编
- 2024年医生招聘协议样本下载
- 学习先进教师心得体会
- 2024年车辆信用担保服务正式协议
- 2024专项水稳层铺设项目协议样本
- 2024采购部常用商品买卖协议模板
- 2024年商铺租赁协议模板范例
- 2024年事业单位招聘考试公共基础知识试题及答案(共300题)
- 2024年秋八年级历史上册 第13课 五四运动教案 新人教版
- 综合实践项目 制作细胞模型(课件) 2024-2025学年七年级生物上学期同步课件(2024人教版)
- 工业机器人离线编程与应用-认识FANUC工业机器人
- 教育集团教师培养方案
- 答辩状物业合同无效模板范文
- DL∕T 5156.2-2015 电力工程勘测制图标准 第2部分:岩土工程
- 英语-福建省泉州市2023~2024学年高一下学期期末教学质量监测试题和答案
- 2023-2024学年山西省太原市高二上学期期中学业诊断数学试卷
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年(高频重点提升专题训练)共500题附带答案详解
- 期中复习(易错50题20个考点)-苏科版八年级《数学》上册重难点专题提优训练(解析版)
评论
0/150
提交评论