




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学生编号学生授课教师辅导学科八年级数学教材版本上教课题名称平面向量课时进度总第 课时授课时间5月26日教学目标1、掌握有向线段的相关概念并知道如何画有向线段2、掌握向量和模的概念3、掌握向量的表示方法4、掌握向量的加法法那么重点难点掌握向量的加法法那么同步教学内容及授课步骤一、 知识梳理:知识点1、向量的概念1) 向量定义:既有大小又有方向的量.2) 向量表示:有向线段或字母表示:字母表示:或.3) 向量的模:向量的大小叫做向量的模向量的长度记做:例题P、Q为两点 1P、Q两点间的距离为100米2小明从点P出发沿直线PQ,向Q行进100米3小明从点P出发,以每分钟100米的速度沿直线PQ,向Q
2、前进在上述三个量中,向量的个数为 C A、0B、1C、2D、3限时训练1、假设图所示,在圆中,向量,是有相同方向的向量单位向量相等的向量模相等的向量2、向量的两个要素是:大小和 3、向量的方向是指由有向线段的_到_的指向。4、规定了_的线段叫做有向线段,向量的几何表示可用 来表示。知识点2、相等向量、相反向量,平行向量1相等向量:方向相同且长度相等的两个向量.说明:既要考虑方向,又要考虑长度;同向且等长的有向线段表示同一个向量,即向量和起点无关.2相反向量:方向相反且长度相等的两个向量.既要考虑方向,又要考虑长度3平行向量:方向相同或相反的两个向量.只要方向相同或相反,与长度无关相等向量、相反
3、向量、平行向量的比较见以下列图相等向量相反向量平行向量方向相同相反相同或相反大小相等相等无关例题如图,点O是线段ABCDEF的中点(1) 写出与、相等的向量(2) 写出与、互为相反的向量(3) 写出与、的平行向量知识点3、平面向量的加法1向量的加法:求两个向量的和向量的运算叫做向量的加法2向量加法的三角形法那么:求不平行的两个向量的和向量时,只要把第二个向量与第一个向量首尾相接,那么,以第一个向量的起点为起点,第二个向量的终点为终点,所得的向量即是这两个向量的和向量3)4加法满足交换律和结合律例题如图是四个全等且相邻的正方形请用“三角形法那么说明+=知识点4、平面向量的多边形法那么一般的,几个
4、向量相加,可把这几个向量顺次首尾相接,那么它们的和向量是以第一个向量的起点为起点,最后一个向量的终点为终点的向量这样的规定叫做几个向量的多边形法那么例题ABCDE如图:梯形ABCD中,ABDC,点E在AB上,ECAD,那么 。答案:压轴题链接在直角坐标系中,O是原点,第一象限内两点A、B的坐标分别为Aa,b,B(c,d), ,求点C的坐标用含a、b、c、d的式子表示知识点5、平面向量的减法1) 向量减法的三角形法那么:在平面内取一点,以这个点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点,被减向量的终点为终点的向量.2向量的减法可以转化为向量的加法:减去一个向量,等于加上这个
5、向量的相反向量向量减法是加法的逆运算.例题如下列图,正方形ABCD的边长等于1,=,=,=; 求作:1+; 2+知识点6、向量的平行四边形法那么向量加法的平行四边形法那么:如果是两个不平行的向量,那么求它们的和向量时,可以在平面内任取一点为公共起点作两个向量与相等,以这两个向量为邻边作平行四边形,然后以所取的公共起点为起点,作这个平行四边形的对角线向量,那么这一对角线向量就是的和向量.这个规定叫做向量加法的平行四边形法那么.其中另外一个对角线向量即是的差向量,这个差向量与被减向量共终点.例题: 说明:1求两个非零向量和的平行四边形法那么和三角形法那么,其本质是一致的 (2)两个平行向量的和一般
6、用三角形法那么 总结:1、向量的定义向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.向量表示法:有向线段表示: 字母表示:,.向量的模:向量的大小叫做向量的模向量的长度记做:.2、相等向量、相反向量,平行向量探究:如图,在梯形ABCD中,ADBC,过A点作AEDC交BC于E点.1有什么特点?引出“相等向量:方向相同且长度相等的两个向量.说明:既要考虑方向,又要考虑长度.2有什么特点?引出“相反向量:方向相反且长度相等的两个向量.既要考虑方向,又要考虑长度.3有什么特点?引出“平行向量:方向相同或相反的两个向量.只要方向相同或相反,与长度无关.归纳和总结:相等向量、相反向量、平行向量
7、比较见以下列图;相等向量相反向量平行向量方向相同相反相同或相反大小相等相等无关3、向量加法的三角形法那么首尾相接求不平行的两个向量的和向量时,只要把第二个向量与第一个向量首尾相接,那么,以第一个向量的起点为起到,第二个向量的终点为终点,所得的向量即是者两个向量的和向量4、零向量零向量:大小为0,方向任意即:说明:零向量是向量,故零向量既有大小,又有方向的量5、向量的交换律和结合律(A) ,求作:,如图:;即加法满足交换律6、向量的减法三角形法那么同起点:在平面内取一点,以这个点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点,被减向量的终点为终点的向量.又:减去一个向量,等于加
8、上这个向量的相反向量.例1:AD是ABC的中线,试用表示向量例2:向量;求作:12稳固练习:1、B,D在ABCD的对角线上,且有EB=DF中, 设,那么:_;_作:2、如图:梯形ABCD中,AB/DC,CE/AD,点E在AB上,那么_预留作业 课堂反响教学目标完成: 照常完成 提前完成 延后完成 学生接受程度: 完全能接受 局部能接受 不能接受 学生课堂表现: 很积极 比较积极 一般 学部主任审核等第 A.优秀 B.良好 C.一般 D.较差 课后作业专案学生所属年级八年级辅导学科数学任课教师作业时限90分钟布置时间5月 26日 DABCO1、如图,在平行四边形ABCD中,AC、BD交于点O,
9、那么_。2、四边形ABCD中,假设向量与是平行向量,那么四边形ABCD是 A、平行四边形 B、梯形 C、平行四边形或梯形 D、不是平行四边形,也不是梯形3、平行四边形ABCD,对角线AC和BD相交于点O ,以下等式成立的是 A、 B、 C、 D、DABCE4、如图,在图中标出的4个向量,并用向量表示以下向量 1 26、四边形ABCD中,假设向量与是平行向量,那么四边形ABCD是 A、平行四边形 B、梯形 C、平行四边形或梯形 D、不是平行四边形,也不是梯形9假设是非零向量,那么以下等式正确的选项是 A、 B、 C、 D、10 、是两个非零向量,是一个单位向量,以下等式中正确的选项是 A、 B、
10、 C、 D、11在平行四边形ABCD中,假设,那么 用和表示12 如图,梯形ABCD中,AB/CD,点E在AB上,EC/AD,那么 。13 计算: .14、以下说法中,不正确的选项是相等的向量都平行平行的向量都相等或相反相反的向量都平行不相等的向量就不平行15、假设,是两个不平行的非零向量,并且,那么等于 A; B; C; D不存在。16、在四边形ABCD中,假设向量与是平行向量,那么四边形ABCD是 (A) 平行四边形; B梯形; C平行四边形或梯形; 不是平行四边形也不是梯形。17、为非零向量,且与不平行,假设,那么与必定_不共线不平行_。18、假设是非零向量,那么以下等式正确的选项是 A=; B=; C+=0; D+=019、在以下关于向量的等式中正确的选项是 A; B;C; D 20、以下说法中,正确的选项是 A零向量是没有方向的。 B假设=,那么= C+= (D) 假设=,那么21、计算:+等于 (A) 0 (B) (C) (D) 22、向量、求作:23、化简:+的结果是 A B C D24、以下说法中,正确的选项是 A模相等的向量必相等 B两个非零向量之和必是非零向量 C两个非零向量之差必是非零向量 D相等的向量模相等25、如下列图,四边形ABCD是平行四边形,那么以下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高速项目公司组建方案
- 高温防治对策措施方案
- 住宅拆迁补偿安置房产权转让协议
- 应急医疗物资运送方案
- 铁路安全面试题及答案
- 柑橘销售奖励方案
- 项目预测方案么
- 余杭社工面试题及答案
- 客户分类文件管理方案
- 产品实物生产定制方案
- 测评体系建设工作通知303
- DL∕T 1100.3-2018 电力系统的时间同步系统 第3部分:基于数字同步网的时间同步技术规范
- 采石场工程劳务分包合同范本
- 外科学课件换药及拆线
- 2024年高考英语读后续写真题试题分析及范文讲义
- DZ/T 0462.8-2023 矿产资源“三率”指标要求 第8部分:硫铁矿、磷、硼、天然碱、钠硝石(正式版)
- 子宫脱垂护理
- 果农指南:释迦果病虫害防治手册
- DL/T5315-2014水工混凝土建筑物修补加固技术规程(完整)
- 兰州彤辉商贸有限公司肃南县博怀沟一带铜铁矿矿产资源开发与恢复治理方案
- 零星维修项目服务方案
评论
0/150
提交评论