



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微型冷热电联供系统-人工神经网络建模及仿真 魏会东 吴静怡 王如竹 皇甫艺 许煜雄摘要:本文以人工神经网络为工具,建立了燃气电机组和吸附式制冷机组成的微型冷热电联供系统的模型,对于模型的仿真结果进行了分析。通过对模型的分析和评价,发现人工神经网络模型能准确适应联供系统的高度非线性。仿真结果显示了模型与系统的实际运行规律较为符合,为以后指导系统的优化运行和控制的设计奠定了良好的基础。 关键词:微型冷热电联供系统 非线性 BP神经网络 0 前言能源是当今社会
2、发展所面临的一个重大问题。随着全球经济的快速发展和可持续战略的实施,能源的利用问题也摆在了非常重要的位置。冷热电联供系统作为一种新的能源利用方式具有无可比拟的优势。冷热电联供系统用天然气作为一次能源,随着世界天然气产量的增加,天然气将大大改变现有的能源结构,成为能源利用新的主力;而冷热电联供系统作为一种能量梯级利用系统,利用一次能源驱动发动机发电,利用余热利用设备对余热进行回收利用,同时提供电力,热量和冷量,这样能大大提高能源的利用效率1。基于以上优点,冷热电联供系统成为各国竞相研究的对象,并且在美国、日本和欧洲各国都有大规模的实际应用。冷热电联供系统的一个重要的研究方向是整个系统的建模,好的
3、系统模型可以用来确定系统的可行性和分析预测系统的运行,以及用于系统的控制策略研究,并可以为系统的优化匹配和优化运行提供指导。以往的关于联供系统的数学模型都是基于热力学基本原理,建立简单的数学模型。而联供系统的特性是高度非线性化的,传统的热力学模型无法准确描述其运行特性,因此需要用另外的一种思路去建立模型,而人工神经网络则从一定程度上满足了这一需要。人工神经网络吸取了生物神经网络的许多优点,表现在:(1)高度的并行性。(2)高度的非线性全局作用。(3)良好的容错性与联想记忆功能。(4)十分强的自适应、自学习能力。2近年来,人工神经网络已经在制冷空调方面有了一些应用。5、71 微型冷热电联供系统实
4、验装置设计1.1 系统描述上海交通大学制冷与低温工程研究所孔祥强1等建立了制冷功率在10 kW左右的微型冷热电联供系统试验台,整个系统采用了一台小型燃气发电机组和一台研究所自己研制的余热型吸附式制冷机,其系统图见图1。系统设计参数见表1。,隐节点为,阈值为,隐节点与输出节点的网络权值。隐节点的输出输出节点的计算输出输出节点的误差公式图2 燃气发电机组神经网络结构图图4 燃气发电机组发电量和回收余热量随输入能量的变化图图6 微型冷热电联供系统神经网络模型的系统输出仿真图 由图4所示,燃气发电机组的发电量和回收的余热量随着输入能量的增大而增大,在输入能
5、量在达到30 kW以后,发电量和余热量随着输入能量近似接近线形变化。由图5所示,在其它参数固定时,吸附式制冷机的产冷量随输入热量的增加而接近线性增大,也就是说制冷机的COP值此时变化不大。图6是神经网络模型对系统冷热电同时输出的仿真,从图中可以看出,在发电量一定时,也就是系统输入能量一定时,随着制冷量的增加,系统输出的热量增加,这是由于发电量对应了一定的总的余热回收量,制冷量的增加使得用于吸附机的热量增大,因而使得剩余的输出热量减少。在制冷量一定时,随着发电量的增加,系统的输入能量随之增加,从而使得总的余热回收量增加,制冷量不变对应的吸附机输入热量不变,使得剩余的输出热量增加。上述的仿真结果是
6、与实际的系统规律相符合的。3 人工神经网络模型(ANN Model)的评价为了对建立的人工神经网络模型进行评价,本文采用了两种验证方法,一是模型与所利用的实验数据进行误差计算;二是用另外的几组新的数据对模型进行测试。其误差曲线见图7,图8;其测试图见图9,图10。如图7所示,燃气发电机组模型的发电量绝对误差非常小,且波动也较小,说明模型和实验数据拟合的比较好;而余热量在输入热量较大时误差突然变大,这是由于神经网络在训练时候的随机性决定的,但其绝对误差控制在0.06范围内,相对误差也非常小。在图9中可以看出模型对于测试点的预测效果非常好。如图8所示,吸附式制冷机模型的绝对误差在0.03范围内波动,由图10可见,测试点基本上在模型曲线上下波动,在多输入参数的情况下,说明模型具有一定的适用性。图8 吸附式制冷机神经网络模型的误差曲线图图10 吸附式制冷机神经网络模型的测试图4 结论针对微型冷热电联供系统的高度非线性,多输入多输出的特点,本文提出了以BP神经网络进行建模的思想。系统模拟和评价的结果表明,神经网络作为一种非线性的数学工具,具有快速、简单、准确的特点,结合Matlab的神经网络工具箱使得算法的精度和模型的适用性大大增强。这为以后预测系统的运行,系统的控制设计都提供了良好的基础。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级上册数学教案-练习七-北师大版
- 六年级上册数学教案-3.1 倒-数 |西师大版
- 六年级下册数学教案-4.1扇形统计图的认识 ︳西师大版
- 三年级上册数学教案-解决问题第一课时|苏教版
- 六年级上册数学教案 -2.1 分数混合运算|北师大版
- 融资担保培训协议书(2篇)
- 北师大版数学三年级上册单元测试卷-第三单元-加与减(含答案)
- 2024年血压调节用品项目资金筹措计划书代可行性研究报告
- 2025年度两人共同投资可再生能源项目的股份合作合同
- 2025年度合伙人退出与合作伙伴关系维护协议
- 生涯规划与就业创业全套课件电子教案板
- 湘少版六年级英语下册《全册课件》
- 2024-2030年中国护眼台灯行业市场发展趋势与前景展望战略分析报告
- 《土壤肥料学通论》课程教学大纲
- 第十四届全国交通运输行业职业技能竞赛(公路收费及监控员)赛项题库-下(多选题-共3部分-2)
- 集合功能的测定(双眼视检查)
- 2024年农村自建房装修合同
- 2024年《高等教育心理学》考前辅导必背习题库(300题)
- 2024年江苏农牧科技职业学院单招职业适应性测试题库完美版
- 2024年广西职业院校技能大赛中职组《智慧物流作业》模块MC竞赛样题
- 人事专员简历模板
评论
0/150
提交评论