版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、不等式专题复习类型一:不等关系及解不等式1若为实数,则下列命题正确的是( )A若,则 B若,则C若,则 D若,则2求下列不等式的解集(1)x2+4x+40 (2)(12x)(x1)3(x+1)20(3)23已知不等式的解集为,则不等式的解集为( )A BC D4关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a=( )(A) (B) (C) (D) 5已知函数则不等式的解集为( )A B C D6若关于的不等式在区间上有解,则实数的取值范围为 A B C(1,+) D 7已知不等式>0的解集为(-1,2),是和的等比中项,那么=A
2、3B-3C-1D1类型二:简单的线性规划问题1已知平面直角坐标系xOy上的区域D由不等式组给定若M(x,y)为D上的动点,点A的坐标为,则z=的最大值为( )A.3 B.4 C.3 D.42已知点与点在直线的两侧,且, 则的取值范围是( )A B C D 3在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则的最小值为( )A. 2 B. 1 C. D. 4已知点M(x,y)是平面区域内的动点,则的最大值是( )(A)10 (B) (C) (D)135设x,y满足,若目标函数z=ax+y(a0)最大值为14,则a为( )A B23 C2 D16若实数x,y满足不等式组且x+y的最大值
3、为9,则实数m=( )A2 B1 C1 D27若关于的不等式组,表示的平面区域是等腰直角三角形区域,则其表示的区域面积为( )A.或 B.或 C.或 D.或 类型三:不等式恒成立问题1.已知不等式(1)若对不等式恒成立,求实数的取值范围;(2)若对不等式恒成立,求实数的取值范围;(3)若对满足的一切m的值不等式恒成立,求实数的取值范围2在ABC中,已知恒成立,则实数m的范围是( )A. B. C. D. 参考答案1B试题分析. A 若,则不成立;C 对两边都除以,可得,C不成立;D令则有所以D不成立,故选B.3B试题分析:由已知可得是方程的两根由根与系数的关
4、系可知,代入不等式解得4A【解析】由题意知x1,x2是方程x2-2ax-8a2=0的两根,所以x1+x2=2a,x1x2=-8a2,则(x2-x1)2=(x1+x2)2-4x1x2=4a2+32a2=36a2,又x2-x1=15,可得36a2=152,又a>0,则a=.故选A.51C试题分析:当时,即为解得当时,即为解得,所以不等式的解集为.考点:分段函数与不等6A试题分析:问题等价转化为不等式在区间上有解,即不等式在区间上有解,令,则有,而函数在区间上单调递减,故函数在处取得最小值,即,.7B【解析】由,恒成立,即恒成立,选B.8D【解析】试题分析:根据题意,由于不等式>0的解集
5、为(-1,2),那么可知-1是因式ax+b=0的根,所以a=b,又因为是和的等比中项,则有,可知,故答案为1,选D.考点:一元二次不等式的解集9D【解析】10B解:首先做出可行域,如图所示:z=,即y=x+z做出l0:y=x,将此直线平行移动,当直线y=x+z经过点B时,直线在y轴上截距最大时,z有最大值因为B(,2),所以z的最大值为4故选B11D试题分析:由已知,画出可行域及直线,如图所示平移,当其经过点时,;当其经过点时,故选12C【解析】由得A(3,1)此时线OM的斜率最小,且为,选C.13D试题分析:解:点M(x,y)所在的平面区域如下图中的阴影部分,设点 的坐标为 由图可知当最大时
6、,点M应在线段上;而 的最大值是13.故应选D.22(1)(2)(3)【解析】试题分析:(1)要使不等式恒成立综上,实数的取值范围是 4分(2)令当时,显然恒成立 5分当时,若对不等式恒成立,只需即可解得 当时,函数的图象开口向下,对称轴为,若对不等式恒成立,结合函数图象知只需即可,解得 综上述,实数的取值范围是 11分(3)令若对满足的一切m的值不等式恒成立,则只需即可 解得 实数的取值范围是2C【解析】试题分析:由线性约束条件画出可行域,然后结合目标函数的最大值求出a的值解:画出约束条件的可行域,如图:目标函数z=ax+y(a0)最大值为14,即目标函数z=ax+y(a0)在的交点M(4,
7、6)处,目标函数z最大值为14,所以4a+6=14,所以a=2故选C考点:简单线性规划3C解:先根据约束条件画出可行域,设z=x+y,将最大值转化为y轴上的截距,当直线z=x+y经过直线x+y=9与直线2xy3=0的交点A(4,5)时,z最大,将m等价为斜率的倒数,数形结合,将点A的坐标代入xmy+1=0得m=1,故选C4D试题分析:可行域等腰三角形由三条直线围成,因为的夹角为,所以的夹角为或者的夹角为,当的夹角为时,可知,此时等腰三角形的直角边长为,所以面积为,当的夹角为时,此时等腰三角形的直角边长为,面积为,所以本体的正确选项为D.考点:线性约束条件.5解:(1)由x2+4x+40可化为(x+2)20,(用判别式同样给分)故原不等式的解集为x|x2,xR;(2)由(12x)(x1)3(x+1)20可化为(2x1)(x1)3(x+1)20,且方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校工作计划
- 闭门器配件行业市场发展及发展趋势与投资战略研究报告
- 四年级的科学教学工作计划
- 仓管的实习自我总结十篇
- 中秋节活动策划方案范文锦集六篇
- 三年级数学教师自我鉴定
- 初中语文课前演讲稿10篇
- 生活中的美初中作文600字【5篇】
- 有关晚会策划方案范文汇编5篇
- 旅游社实习报告四篇
- 全膝关节置换术加速康复临床路径(2023年版)
- Unit 1 Art Using Language (教案)-高中英语人教版(2019)·选择性必修第三册
- 2023-2024学年鞍山市重点中学高一上数学期末质量检测试题含解析
- 基于PLC的自动打铃控制器
- 中式烹调技艺教案
- 招标代理及政府采购常识汇编
- 人工智能引论智慧树知到课后章节答案2023年下浙江大学
- 医保按病种分值付费(DIP)院内培训
- 国开2023秋《药剂学》形考任务1-3参考答案
- 钓鱼比赛招商方案范本
- 桥梁竣工施工总结
评论
0/150
提交评论