版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 金品质金品质高追求高追求 我们让你更放心我们让你更放心 ! 2 22 2二项分布及其应用二项分布及其应用随机变量及其分布2.2.22.2.2事件的相互独立性事件的相互独立性 金品质金品质高追求高追求 我们让你更放心我们让你更放心 ! 2.2.22.2.2事件的相互独立性事件的相互独立性预预 习习 导导 学学典典 例例 精精 析析方方 法法 总总 结结学学 习习 目目 标标课课 堂堂 导导 练练 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 1在具体情境中,了解两个事件相互独立的概念及简单应用2掌握相互独立事件同时发生的概率乘法公式 金品质金品质高追求高追求 我们让你更放心
2、!我们让你更放心! 返回 基础梳理1事件A是否发生,对事件B发生的概率没有影响,这样的两个事件叫做_事件例如:盒中有5个球,其中有3个绿的,2个红的,每次取一个有放回地取两次,设A第一次抽取,取到绿球,B第二次抽取,取到绿球,则P(A)_,P(B)_.相互独立3535相互独立相互独立相互独立 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 3两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)_.例如:甲坛子里有3个白球,2个黑球;乙坛子里有2个白球,2个黑球,从中分别摸出1个球,则它们都是白球的概率是_推广:一般地,如果事件a1,a2, ,an相互独立,
3、那么这n个事件同时发生的概率,等于每个事件发生的概率的积,即_P(A)P(B)P(a1a2an)P(a1)P(a2)P(an) 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 例如:如果A,B,C是三个相互独立的事件,那么1P(A)P(B)P(C)表示_4互斥事件与独立事件互斥事件相互独立事件概念不可能同时发生的两个事件叫做互斥事件如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件三个相互独立的事件A,B,C中至少有一个不发生的概率 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 符号互斥事件A,B中有一个发生,记作
4、AB相互独立事件A,B同时发生记作AB计算公式P(AB)P(A)P(B)P(AB)P(A)P(B)联系两事件A,B相互独立是指事件A出现的概率与事件B是否出现没有关系,并不是说A,B间没有关系相反,若A,B独立,则常有AB ,即A与B不互斥A,B互斥是指A的出现必导致B的不出现,并没有说A出现的概率与B是否出现有关系 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 例如:有甲、乙两批种子,发芽率分别是和,在两批种子中各取一粒,A由甲批中取出一个能发芽的种子,B由乙批中抽出一个能发芽的种子,问:(1)A,B两事件是否互斥?是否互相独立?(2)两粒种子都能发芽的概率?(1)A,B
5、两事件不互斥,是互相独立事件(2)AB两粒种子都能发芽,P(AB)P(A)P(B)0.56. 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 自测自评1下列事件,A,B是独立事件的是()A一枚硬币掷两次,A“第一次为正面”,B“第二次为反面”B袋中有2白,2黑的小球,不放回地摸两个球,A“第一次摸到白球”,B“第二次摸到白球”C掷一颗骰子,A“出现点数为奇数”,B“出现点数为偶数”DA“人能活到20岁”,B“人能活到50岁”A 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 2(2011年青岛二模)甲、乙两人独立地解同一问题,甲解决这个问题的概率是P1,乙解
6、决这个问题的概率是P2,那么其中至少有一人解决这个问题的概率是()AP1P2BP1P2C1P1P2 D1(1P1)(1P2)解析:至少有1人能解决这个问题的对立事件是两人都不能解决,两人解决问题是相互独立的,故所求概率为1(1p1)(1p2)答案:D 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 答案:B 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 1616 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 独立事件的概念 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A一个家庭中既有男孩又有女孩,B一个家庭中最多有一个女孩对
7、下述两种情形,讨论A与B的独立性(1)家庭中有两个小孩;(2)家庭中有三个小孩解析:(1)有两个小孩的家庭,男孩、女孩的可能情形为(男,男),(男,女),(女,男),(女,女), 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 它有4个基本事件,由等可能性知概率各为 .这时A(男,女),(女,男),B(男,男),(男,女),(女,男),AB(男,女),(女,男)于是P(A) ,P(B) ,P(AB) .由此可知P(AB)P(A)P(B)所以事件A,B不相互独立(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为(男,男,男),(男,男,女),(男,女,男),(男,女,女)
8、,(女,男,男),(女,男,女),(女,女,男),(女,女,女)14341212 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 由等可能性知这8个基本事件的概率均为 ,这时:A中含有6个基本事件,B中含有4个基本事件,AB中含有3个基本事件从而事件A与B是相互独立的点评:当两个事件A,B互斥时,有加法公式P(AB)P(A)P(B);当两个事件相互独立时,则有乘法公式P(AB)P(A)P(B)18 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 跟踪练习1判断下列各题中给出的事件是否是相互独立事件:(1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个黑球
9、从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个球称为乙试验,事件A1表示“从甲盒中取出的是白球”,事件B1表示“从乙盒中取出的是白球”(2)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A2表示事件“第一次取出的是白球”,把取出的球放回盒中,事件B2表示事件“第二次取出的是白球”(3)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用A3表示“第一次取出的是白球”,取出的球不放回,用B3表示“第二次取出的是白球” 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 解析:(1)甲试验与乙试验是两个相互独立的试验事件A1和B1是否发生,相互之间没有影响,故事件A1与事件B1是相
10、互独立事件(2)在有放回的取球中,事件A2与B2是否发生相互之间没有任何影响,因而它们是相互独立事件(3)在不放回的取球中,事件A3发生后,事件B3的概率发生了改变,因此,A3与B3不是相互独立事件 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 相互独立事件同时发生的概率 一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率解析:记:“第1次取出的2个球都是白球”的事件为A,“第2次取出的2个球都是红球”的事件
11、为B,“第1次取出的2个球1个是白球、1个是红球”的事件为C,很明显,由于每次取出后再放回,A,B,C都是相互独立事件 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 跟踪练习2甲、乙两个人独立地破译密码的概率分别为 和 ,求:(1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一个人译出密码的概率;(5)至少一个人译出密码的概率1314 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心!
12、 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 独立事件与互斥事件的综合应用 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的求:(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;(2)进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(3)进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 解析:记A表示事件“进入商场的1位顾客购买甲种商品”,则P(A);记B表示事件“进入商场的1位顾客购买乙种商品”,
13、则P(B);记C表示事件“进入商场的1位顾客,甲、乙两种商品都购买”;记D表示事件“进入商场的1位顾客购买甲、乙两种商品中的一种”;记E表示事件“进入商场的1位顾客至少购买甲、乙两种商品中的一种” 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 跟踪练习3甲、乙、丙三人各自向同一飞机射击,设击中飞机的概率分别为0.4,0.5,0.8.如果只有一人击中,则飞机被击落的概率是;如果有两人击中,则飞机被击落的概率是;如果三人都击中,则飞机一定被击落求飞机被击落的概率分析:利用相互独立事件同时发生的概率求解解析:设甲、
14、乙、丙三人击中飞机的事件分别为A,B,C,依题意知,A,B,C相互独立,故所求的概率为 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 0.8)0.8)0.492. 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 1从甲袋内摸出1个白球的概率为 ,从乙袋内摸出1个白球的概率是 ,从两个袋内各摸1个球,那么概率为 的事件是()A2个球都是白球 B2个球都不是白球C2个球不都是白球 D2个球中恰好有一个白球131256答案:C 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 2投掷一枚均匀硬币和一颗均匀骰子各一次,记“硬币正面向上”为事件A,“
15、骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()答案:C 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 3甲、乙两门高射炮同时向一敌机开炮,已知甲击中敌机的概率为,乙击中敌机的概率为,敌机被击中的概率为_解析:10.92.答案: 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 4如右图,A,B,C表示3个开关,若在某段时间内它们正常工作的概率分别为,那么系统的可靠性(3个开关只要一个开关正常工作即可靠)是_解析:10.994.答案: 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 5某条道路的A,B,C三处设有交通灯
16、,这三灯盏在一分钟内平均开放绿灯的时间为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 6一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_(用数字作答)35195_解析:分情况讨论:若共有3人被治愈,则 P1 0.93 (10.9)0.291 6.若共有4人被治愈,则P20.940.6561.故至少有3人被治愈的概率为PP1P20.947 7.34C 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 7一射手对同一目标独立地射击4次,若至少命中一次的概率为 ,则该射手一次射击的命中率为 808123_ 金品质金
17、品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 解析:因为A,B断开且C,D至少有一个断开时,线路才断开,导致灯不亮,所以灯不亮的概率为9已知电路中有4个开关,每个开关独立工作,且闭合的概率为 ,求灯亮的概率12 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 10某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答得零分假设这名同学答对第一、二、三个问题的概率分别为,且各题答对与否相互之间没有影响(1)求这名同学得300分的概率;
18、(2)求这名同学至少得300分的概率分析:写出这名同学得300分及至少得300分所包含的事件,并弄清它们的独立性及互斥性,代入概率公式可求解解析:记P(A),P(B),P(C)0.6.(1)事件“这名同学得300分”可表示为 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 (10.7)(10.8)0.228.(2)“这名同学至少得300分”可理解为这名同学得300分或400分,所以该事件可表示为0228P(A)P(B)P(C)02280.564. 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 A点评:此类题目主要是融互斥事件与相互独立事件于一体,重在分析各
19、事件间的关系解答此类题目时, 应先分析待求事件由几部分基本事件组成,如果彼此互斥,则利用互斥事件公式P(AB)P(A)P(B),然后就每部分事件A,B借助于相互独立事件公式求解当对立事件概率易求时,也可以用对立事件概率公式P(A)1P( )转化 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 11甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 ,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 .甲、丙两台机床加工的零件都是一等品的概率为 .(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(
20、2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率1411229 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 解析:(1)设A,B,C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 495011012.(2012年四川卷)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为 和p.(1)若在任意时刻至少有一个系统不发生故障的概率为 ,求p的值;(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望E. 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 金品质金品质高追求高追求 我们让你更放心!我们让你更放心! 返回 所以,随机变量的概率分布列为:故随机变量X的数学期望为: 金品质金品质高追求高追求 我们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《高原疾病防治知识》课件
- 2025年分期付款化妆品购买合同
- 2025年PPP项目合作物资保障协议
- 二零二五年海洋工程建设项目施工合同6篇
- 二零二五年度PVC管材绿色制造技术合作合同3篇
- 2025年度新能源发电项目租赁合同3篇
- 2025版学校图书馆古籍保护与展示工程合同3篇
- 二零二五年度航空航天器研发与测试合同4篇
- 2025年度住宅小区物业管理权转让与社区安全防范协议
- 二零二五年度文化创意产业经营授权协议
- 2024年云南省中考数学试题含答案解析
- 国家中医药管理局发布的406种中医优势病种诊疗方案和临床路径目录
- 2024年全国甲卷高考化学试卷(真题+答案)
- 汽车修理厂管理方案
- 人教版小学数学一年级上册小学生口算天天练
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 三年级数学添括号去括号加减简便计算练习400道及答案
- 苏教版五年级上册数学简便计算300题及答案
- 澳洲牛肉行业分析
- 计算机江苏对口单招文化综合理论试卷
- 成人学士学位英语单词(史上全面)
评论
0/150
提交评论