




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、经典谐振子与量子谐振子的比较研究潘 保 平(天水师范学院 物理与信息科学学院 甘肃 天水 741000)摘要:线性谐振子问题在经典力学和量子力学中都是一个倍受关注的问题,他的重要性在于自然界中广泛存在着简谐振动,许多体系都可以近似地看作线性谐振子。本文从经典和量子两个角度对谐振子问题进行研究和比较,并用不确定度关系探讨了零点能问题。关键字:谐振子;零点能;不确定度关系;波粒二象性Classics Harmonic Osicillator andQuantum Harmonic OsicillatorPan Baoping(Department of physics Tianshui Norma
2、l University Gansu TianshuAbstract:This essay discusses the Linear Harmonic scillator from two different aspects Classics and Quantum.It also discusses Zero-point energy by using the uncertainty relation.Key words:harmonic oscillator,zero-point energy,uncertainty relation,wave-particle dualism1、经典力学
3、中的谐振子在经典力学中,谐振子问题可用下面的方式来表述。一质量为M的质点沿ox轴运动,他所受到的回复力可从势函数的微商得到。势函数 (1)力的表达式为:(kook定律) (2)i是沿ox轴的单位矢量。运动方程可以写成: (3)令 (4)(3)式变为: (5)方程(5)的解具有下列形式: (6)它表示一个正弦运动,其振幅为,相位为,角频率为,相应的频率是: (7)只与质点的质量和恢复力常数有关,而振幅和相位都与运动初始条件有关。振子的总能量E是: (8)动能和势能的表达式为: (9) (10)显然总能量在运动中式不变的且由(9)(10)式知:当时,势能有最小值0,而此时动能有最大值。而当时,势能
4、有最大值,而此时动能值最小为0。进一步,对于经典振子:经典振子的速度V为;利用,注意: (11)其中为振幅,平衡点为原点。当时,由(11)式知此时经典振子的速度V有最大值,即经典振子在处逗留时间最短,出现的几率最小。2、量子力学中的谐振子在量子力学中,取谐振子的平衡位置为坐标原点,并选原点为势能零点,则一维谐振子的势能可表示为:K为反映谐振子作用强度的参数,谐振子受力,设振子质量为,令: 则一维谐振子的能量本征方程为: (12) 为方便起见引入没有纲量的变量 代替,它们的关系式:;并令: (13)则(12)式化简为; (14这是一个变系数的常微分方程。(或)有限点式微分方程的常点,而为方程的正
5、则奇点。考虑方程的解在处的渐进行为。当很大时,与相比可以略去,所以方程(14)可写为:不难证明它的解围:。因为波函数的标准条件要求时应有限,所以我们对波函数只取指数上的负号。不妨令方程(14)的解为: (15(14)代入(15)式课的满足方程:用级数解法,把展成的幂级数来求解方程的解。这个级数必须只含有限项,才能在时,使有限;而级数只含有限项的条件是为奇数: (16代入(13)式可得谐振子的能级为:, (17)可见现行谐振子的能量只能取分立值,两相邻的能级间隔为,即。而谐振子的能量本征函数为: (18)其中是归一化常数 (19)最低的四个能级及相应的波函数如下: (20) (21) (22)
6、(23)3、讨论经典谐振子与量子谐振子有着本质的区别,下面将逐一讨论与比较:3.1、能级由(9)(10)式可知经典谐振子的能量取值是连续的,而由(17)式可知量子谐振子的取值是分立的,即是量子化的,其中n为量子数。且能级是等间距的,间距是。能量取分立值是微观粒子具有波粒二象性这一量子特征的重要体现。由(9)式可知当时经典谐振子的最低动能为零,而由(17)式可知,量子谐振子在基态的能量不为零。即当n=0时,,称为零点能,这与经典谐振子完全不同。它与无限势阱总粒子的基态能量( n=1,2,3.)不为零是很相似的,这是一种量子效应,是微观粒子波粒二象性的表现。同样,也可用不确定度关系定性说明。利用坐
7、标和动量的不确定关系:谐振子的能量不确定度关系:使极小的的值可由极值条件:可求得,因此谐振子的零点能:可见谐振子的基态是谐振子问题的最小不确定态,这是由其量子本性所决定的。 3.2、波函数在量子力学中波函数本身无意义,但波函数的绝对值平方:与粒子在空间某点出现的几率成正比。首先我们以基态讨论。对于量子谐振子的基态: , 相应的几率密度为:易知在x=0处有最大值:,即在原点找到粒子的概率最大,由于能量,可知此时的经典回转点为。按经典力学,能量为E的谐振子所能大到离平衡位置最远的距离是称为谐振子的经典回转点。a、由于经典谐振子在x=0处时能最小,并由(9)(10)式可知,此时的动能必定最大(因为机
8、械能守恒),即谐振子的速度最大,见(11)式,振子在x=0处逗留时间最短,因此经典谐振子在x=0处的几率最小。而按量子力学计算,见(26)式,在x=0处的几率却是最大的(见图1).经典与量子刚好相反。b、当经典谐振子的能量为时,经典回转点,经典振子只能处于的区域中。应为在处,势能,即等于总能量。在这点速度减慢为零,不能再继续往外跑。而按照量子力学计算,粒子在的区域,仍有不为零的几率。对于基态,概率为: 对于第一激发态,粒子在经典禁区出现的概率为0.1116.这种明显的量子效应在基态表现的特别突出,对于量子谐振子大约有16%的粒子跑到了的区域以外,这是经典不允许的。当线性谐振子在前几个态时,几率密度与经典情况毫无相似之处,而随着量子数n增加,相似性也随着增加。图2和图3画出了n=0及n=10是线性谐振子的几率密度:图中虚线表示经典线性谐振子的几率密度,实线表示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年辽宁大石桥八年级上期末模拟物理卷【含答案】
- 房屋合同纠纷预防与解决四
- 劳动合同男方提出终止合约
- 设备租赁预付款合同
- 货车租赁公司合同范本
- 装修材料采购合同模板
- 2《以礼待人》公开课一等奖创新教学设计
- 中国古典舞的审美特征
- 医院总值班管理控制
- 八年级生物上册 15.2《动物运动的形成》教学设计 (新版)北师大版
- 新款h2夜视移动电源
- 天津大学年《岩体力学》期末试题及答案
- 成果报告书(模板)
- 牛腿计算表(自动版)
- 供料机工作原理与使用
- 口腔科学第七章口腔局部麻醉备课讲稿课件
- 普通话朗读技巧语调
- CPK计算表格EXCEL格式-自动套用自动计算分析
- 重庆市国家职业资格鉴定申报表(三、四、五级) - 重庆市职业技能鉴定
- 代付款协议(中英文对照版本)
- 半钢子午胎培训
评论
0/150
提交评论