版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、规律探索一选择题12021·泰安,20,3分观察以下等式:313,329,3327,3481,35243,36729,372187解答以下问题:332333432021的末位数字是A0 B1 C3 D7考点:尾数特征分析:根据数字规律得出332333432021的末位数字相当于:37913进而得出末尾数字解答:解:313,329,3327,3481,35243,36729,372187末尾数,每4个一循环,2021÷45031,332333432021的末位数字相当于:37913的末尾数为3,点评:此题主要考查了数字变化规律,根据得出数字变化规律是解题关键2.2021四川绵
2、阳,12,3分把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,现用等式AM=i,j表示正奇数M是第i组第j个数从左往右数,如A7=2,3,那么A2021= C A45,77 B45,39 C32,46 D32,23解析第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33将每组的第一个数组成数列:1,3,9,19,33 分别计作a1,a2,a3,a4,a5an, an表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4
3、 = a3+2+4×2a5 = a4+2+4×3an = an-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同局部a1 + a2 + a3 + a4 + a5 + + a n-1),当n=45时,a n = 3873 > 2021 ,2021不在第45组当n=32时,a n = 1923 < 2021 ,(2021-1923)÷2+1=46,A2021=(32,46).如果是非选择题:那么2n2-4n+32021,2n2-4
4、n-20210,假设2021是某组的第一个数,那么2n2-4n-2021=0,解得n=1+ ,31<<32,32<n<33, 2021在第32组,但不是第32组的第一个数,a32=1923, (2021-1923)÷2+1=46.(注意区别an和An)3. 2021湖南益阳,13,4分下表中的数字是按一定规律填写的,表中a的值应是 1235813a2358132134【答案】:21【解析】通过观察可知上一排每个数字等于其左下方的数字。【方法指导】此题可以通过观察上下排数字的联系求出a的值,也可以根据“前两个数字之和等于第三个数字求出a=8+13=21。4. 2
5、021重庆市(A),10,4分以下图形都是由同样大小的矩形按一定的规律组成,其中第1个图形的面积为2cm2,第2个图形的面积为8 cm2,第3个图形的面积为18 cm2,第10个图形的面积为 A196 cm2 B200 cm2 C216 cm2 D 256 cm2【答案】B【解析】观察图形,第1个图形中有1(12)个矩形,面积为2cm2,即1×22cm2;第2个图形中有4(22)个矩形,面积为8 cm2,即4×222×28cm2;第3个图形有9(32)个矩形,面积为18 cm2,即9×2322×218cm2;,所以第10个图形有100(102)
6、个矩形,面积为:100×2200cm2应选B【方法指导】此题考查数形规律探究能力图形类规律探索题,通常先把图形型问题转化为数字型问题,再从数字的特点来寻找规律进行解答52021山东德州,12,3分如图,动点P从0,3出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到矩形的边时,点P 的坐标为 A、1,4 B、5,0 C、6,4 D、8,3【答案】 D【解析】如以下图,动点P0,3沿所示的方向运动,满足反弹时反射角等于入射角,到时,点P3,0;到时,点P7,4;到时,点P8,3;到时,点P5,0;到时,点P1,4;到时,点P3,0,此时回到出
7、发点,继续.,出现每5次一循环碰到矩形的边.因为2021=402×5+32021÷5=402 3.所以点P第2021次碰到矩形的边时,点P 的坐标为8,3.应选D.【方法指导】此题考查了图形变换轴对称与平面直角坐标系规律探索.以平面直角坐标系为背景,融合轴对称应用的点坐标规律的规律探索题,解题关键从操作中前面几个点的坐标位置变化,猜测、归纳出一般变化规律.62021山东日照,11,4分如图,以下各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A M=mn B M=n(m+1) CM=mn+1 DM=m(n+1)【答案】D 【解析】由前面向个题的规律
8、可得M=m(n+1)。【方法指导】此题是考查找规律的问题,这类问题要求认真分析所给的信息,从而找到一个能代表这个规律的式子来代替。72021湖南永州,8,3分我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于-1,假设我们规定一个新数“,使其满足(即方程有一个根为),并且进一步规定: 一切实数可以与新数进行四那么运算,且原有的运算律和运算法那么仍然成立,于是有,从而对任意正整数n,我们可得到同理可得那么,的值为A0B1C-1D 【答案】D.【解析】由于=,而,=,所以此题选D。【方法指导】对于数字规律题,有如下的步骤:1.计算前几项,一般算出四五项;2.找出几项的规律,这个规律或是循
9、环,或是成一定的数列规律如等差,等比等。3.用代数式表示出规律或是得出循环节即几个数一个循环;4.验证你得出的结论。82021重庆,11,4分以下图形都是由同样大小的棋子按一定的规律组成,其中第个图形有1颗棋子,第个图形一共有6颗棋子,第个图形一共有16颗棋子,那么第个图形中棋子的颗数为 图图图···第11题图A51 B70 C76 D81【答案】C【解析】第个图形有1个棋子,第个图形有1+5个棋子,第个图形有1+5+10个棋子,由此可以推知:第个图形有1+5+10+15个棋子,第个图形有1+5+10+15+20个棋子,第个图形有1+5+10+15+20+25个棋
10、子应选C【方法指导】此题是一道规律探索题,考查观察分析图形并探索归纳规律的能力解决此类问题应先观察图形的变化趋势,从第一个图形开始进行分析,是逐渐增加还是减少,相邻两个图形的变化量与位置序号有怎样的关系;如果所求图形的位置序号较大时,需要运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有n的代数式表示出来,最后用代入法求出特殊情况下的数值【易错警示】用局部的一两个图形之间的规律代替一般规律,这是常见错误;无视第一个图形的规律也是常见错误之一二填空题12021江西,11,3分观察以下图形中点的个数,假设按其规律再画下去,可以得到第n个图形中所有的个数为 用含n的代数式表示【答
11、案】(n+1)2【解析】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示【方法指导】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.22021兰州,19,4分如图,在直角坐标系中,点A3,0、B0,4,对OAB连续作旋转变换,依次得到1、2、3、4,那么2021的直角顶点的坐标为 考点:规律型:点的坐标专题:规律型分析:根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2021除以3,根据商为671可知第2021个三角形的直角顶点为循环组的最后一个三角形的顶
12、点,求出即可解答:解:点A3,0、B0,4,AB=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,2021÷3=671,2021的直角顶点是第671个循环组的最后一个三角形的直角顶点,671×12=8052,2021的直角顶点的坐标为8052,0故答案为:8052,0点评:此题是对点的坐标变化规律的考查了,难度不大,仔细观察图形,得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点32021广东珠海,10,4分如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方
13、形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2,以此类推,那么第六个正方形A6B6C6D6周长是考点:中点四边形专题:规律型分析:根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A6B6C6D6 的周长解答:解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,那么得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,那么周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,那么正方形A2B2C2D2的面积为正方形A1B1C1D1面
14、积的一半,即,那么周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,那么正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,那么周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,那么正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,那么周长是原来的;以此类推:第六个正方形A6B6C6D6周长是原来的,正方形ABCD的边长为1,周长为4,第六个正方形A6B6C6D6周长是故答案为:点评:此题考查了利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方的性质进而得到周长关系42021贵州安顺,18,4分直线上有2021
15、个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点考点:规律型:图形的变化类分析:根据题意分析,找出规律解题即可解答:解:第一次:2021+20211=2×20211,第二次:2×20211+2×20212=4×20213,第三次:4×20213+4×20214=8×20217经过3次这样的操作后,直线上共有8×20217=16097个点故答案为:16097点评:此题主要考查了数字变化规律,根据得出点的变化规律是解题关键52021湖北孝感,17,3分如图,古希腊人常用小石子在沙
16、滩上摆成各种形状来研究数例如:称图中的数1,5,12,22为五边形数,那么第6个五边形数是51考点:规律型:图形的变化类专题:规律型分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解解答:解:51=4,125=7,2212=10,相邻两个图形的小石子数的差值依次增加3,第4个五边形数是22+13=35,第5个五边形数是35+16=51故答案为:51点评:此题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键6 2021湖南娄底,18,4分如图,是用火柴棒拼成的图形,那么第n个图形需2n+1根火柴棒考点:规律型:图形
17、的变化类分析:按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加n1个,那么此时火柴棒的个数应该为:3+2n1进而得出答案解答:解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2n1=2n+1故答案为:2n+1点评:此题主要考查了图形变化类,此题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴
18、棒的个数增加2根,然后由此规律解答72021贵州省黔东南州,16,4分观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;,那么1+3+5+2021的值是1014049考点:规律型:数字的变化类分析:根据数字变化规律,得出连续奇数之和为数字个数的平方,进而得出答案解答:解:1=12;1+3=22;1+3+5=32;1+3+5+7=42;,1+3+5+2021=2=10072=1014049故答案为:1014049点评:此题主要考查了数字变化规律,根据得出数字的变与不变是解题关键82021河北省,20,3分如图12,一段抛物线:yx(x3)0x3,记为C1,它与x轴交于点O
19、,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;如此进行下去,直至得C13假设P37,m在第13段抛物线C13上,那么m =_答案:2解析:C1:yx(x3)0x3C2:yx3(x6)3x6C3:yx6(x9)6x9C4:yx9(x12)9x12C13:yx36(x39)36x39,当x37时,y2,所以,m2。9.2021贵州安顺,18,4分直线上有2021个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.【答案】:16097.【解析】第一次:2021+20211=2&
20、#215;20211,第二次:2×20211+2×20212=4×20213,第三次:4×20213+4×20214=8×20217经过3次这样的操作后,直线上共有8×20217=16097个点【方法指导】此题主要考查了数字变化规律,根据得出点的变化规律是解题关键102021山东滨州,18,4分观察以下各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=
21、3×4×100+25, 请猜测,第n个算式(n为正整数)应表示为_【答案】:【解析】根据数字变化规律得出个位是5的数字数字乘积等于十位数乘以十位数字加1再乘以100再加25,进而得出答案【方法指导】此题主要考查了数字变化规律,根据数字得出数字之间的变与不变是解题关键11(2021浙江湖州,15,4分)将连续的正整数按以下规律排列,那么位于第7行、第7列的数是_【答案】85【解析】第一行的第一列与第二列差个2,第二列与第三列差个3,第三列与第四列差个4,第六列与第七列差个7,第二行的第一列与第二列差个3,第二列与第三列差个4,第三列与第四列差个5,第五列与第六列差个7,第三行
22、的第一列与第二列差个4,第二列与第三列差个5,第三列与第四列差个6,第四列与第五列差个7,第七行的第一列与第二列差个8,是30,第二列与第三列差个9,是39,第三列与第四列差个10,是49,第四列与第五列差个11,是60,第五列与第六列差个12,是72,第六列与第七列差个13,是85;故答案为:85【方法指导】此题考查了数字的变化猜测归纳,这是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题,解决此题的关键是得到每行中前一列与后一列的关系122021江西南昌,14,3分观察以下图形中点的个数,假设按其规律再画下去,可以得到第n个图形中所有的个数为 用含n的
23、代数式表示【答案】(n+1)2【解析】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示【方法指导】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.13、2021深圳,16,3分如以下图,每一幅图中均含有假设干个正方形,第幅图中含有1个正方形;第幅图中含有5个正方形;按这样的规律下去,那么第6幅图中含有 个正方形;【答案】91【解析】第幅图中含有1个正方形,第幅图中含有5个正方形;第幅图中含有14个正方形,;,那么第幅图中含有: 个正方形【方法指导】首先,分类讨论正方形的类型及个数,做到不重不漏,是发现规律的关键。其次,探究数据之间的联系及规律,要将数据作
24、恰当的分解。此题还可以借二次函数模型来解决。142021四川宜宾,14,3分将一些半径相同的小圆按如下图的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ,依次规律,第6个图形有个小圆 【答案】46 【解析】观察上图可发现所有图形中外侧都有四个小圆,这是不变的而中间小圆的个数第一个图形可表示为12,第二个图形可表示为23,第三个图形可表示为34,第四个图形可表示为45,所有第n个图形中小圆的个数可表示为4+n(n+1)故第6个图形中小圆的个数为46.【方法指导】此题考察了根据图形寻找规律的知识,解找规律的题目时首先寻找各局部的共同
25、点然后找各局部的不同点,假设题目给出的条件没有找到规律可仿照题目条件继续往下写几个,一般3-5个式子或图形即可找到规律.15. 2021四川雅安,13,3分一组数2,4,8,16,32,按此规律,那么第n个数是 【答案】2n【解析】先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方【方法指导】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,解题的关键是确定第几个数就是2的几次方16. 2021福建福州,22,14分我们知道,经过原点的抛物线的解析式可以是yax2bx(a0) 1对于这样的抛物线:当顶点坐标为1,1时,_;当顶点
26、坐标为m,m,m0时,与m之间的关系式是_;2继续探究,如果b0,且过原点的抛物线顶点在直线ykx(k0)上,请用含的代数式表示b;3现有一组过原点的抛物线,顶点A1,A2,An在直线yx上,横坐标依次为1,2,n为正整数,且n12,分别过每个顶点作轴的垂线,垂足记为B1,B2,Bn,以线段AnBn为边向右作正方形AnBnCnDn,假设这组抛物线中有一条经过Dn,求所有满足条件的正方形边长【思路分析】1利用顶点坐标公式,得出方程组求解即可;2将该抛物线的顶点坐标,代入直线方程ykxk0,即可求得用含k的代数式表示b;3根据题意可设Ann,n,点Dn所在的抛物线顶点坐标为t,t由12可得,点Dn
27、所在的抛物线解析式为yx22x所以由正方形的性质推知点Dn的坐标是2n,n,那么把点Dn的坐标代入抛物线解析式即可求得4n3t然后由n、t的取值范围来求点An的坐标,即该正方形的边长【答案】11;a或am10;2解:a0yax2bxa(x)2顶点坐标为,顶点在直线ykx上k()b0b2k3解:顶点An在直线yx上可设An的坐标为n,n,点Dn所在的抛物线顶点坐标为t,t由12可得,点Dn所在的抛物线解析式为yx22x四边形AnBnCnDn是正方形点Dn的坐标为2n,n(2n)22×2nn4n3tt、n是正整数,且t12,n12n3,6或9满足条件的正方形边长为3,6或9中国教*育&a
28、mp;#出版网【方法指导】此题考查了二次函数的顶点坐标公式以及函数图像上点的坐标与其解析式的关系,另外还涉及到正方形的性质求二次函数顶点坐标时,可以运用公式也可运用配方法,函数图像上点的坐标适合其函数解析式,解答第3题时,要注意n的取值范围吆!172021广东湛江,16,4分如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,顶点依次用、表示,其中与x轴、底边与、与、均相距一个单位,那么顶点的坐标是 ,的坐标是 第16题图【答案】0,8,8.【解析】由于,而的坐标为1,1,的坐标为2,2的坐标为3,3的坐标为8,8【方法指导】解决数字规律或图形规律突破
29、点之一,用表格上下把数的序号及图形的序号表示出来,再在后面写出它的结果,这样容易看出其中的规律;三解答题1. 2021江苏南京,27,10分对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个 三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为 逆相似。例如,如图,ABCABC且沿周界ABCA与ABCA环绕的方向相同, 因此ABC 与ABC互为顺相似;如图,ABCABC,且沿周界ABCA与 ABCA环绕的方向相反,因此ABC 与ABC互为逆相似。kABCjABCABCABC (1) 根据图I、图II和图III满足的条件,可得以下三对相似三角形: A
30、DE与ABC; GHO与KFO; NQP与NMQ。其中,互为顺相似的是 ;互为逆相似的是 。(填写所有符合要求的序号) (2) 如图,在锐角ABC中,ÐA<ÐB<ÐC,点P在ABC的边上(不与点A、B、C重 合)。过点P画直线截ABC,使截得的一个三角形与ABC互为逆相似。请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明ABCl 理由。 解析: (1) jk;l (4分) (2) 解:根据点P在ABC边上的位置分为以下三种情况。 第一种情况:如图j,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、 PQ2
31、,分别使ÐCPQ1=ÐA,ÐBPQ2=ÐA,此时PQ1C、PBQ2都与ABC互为逆相似。 第二种情况:如图k,点P在AC(不含点A、C)上,过点B作ÐCBM=ÐA,BM交AC 于点M。 当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使ÐAP1Q=ÐABC,此 时AP1Q与ABC互为逆相似; 当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使ÐAP2Q1=ÐABC, ÐCP2Q2=ÐABC,此时AP2Q1、Q2P2C都与ABC互为逆相似。 第三
32、种情况:如图l,点P在AB(不含点A、B)上,过点C作ÐBCD=ÐA,ÐACE=ÐB, CD、CE分别交AC于点D、E。 当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使ÐAP1Q=ÐABC,此时 AQP1与ABC互为逆相似; 当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使ÐAP2Q1=ÐACB, ÐBP2Q2=ÐBCA,此时AQ1P2、Q2BP2都与ABC互为逆相似; 当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q,使ÐBP3Q=
33、208;BCA, 此时QBP3与ABC互为逆相似。 (10分)ABCQ1PjQ2ABCQ1MQ2QP1P2ABCQ1QQP1P2DEQ2P3kl172021东营,17,4分如图,直线l:y=x,过点A0,1作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;按此作法继续下去,那么点A2021的坐标为 答案: 注:以上两答案任选一个都对解析:因为直线 与x轴的正方向的夹角为30°,所以,在中,因为OA=1,所以OB=2,中,所以=4,即点的坐标为0,4,同理=8,所在中,=16,即点的坐标为依次类推
34、,点的坐标为或172021·聊城,17,3分如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A10,1,A21,1,A31,0,A42,0,那么点A4n1n为自然数的坐标为 用n表示考点:规律型:点的坐标专题:规律型分析:根据图形分别求出n1、2、3时对应的点A4n1的坐标,然后根据变化规律写出即可解答:解:由图可知,n1时,4×115,点A52,1,n2时,4×219,点A94,1,n3时,4×3113,点A136,1,所以,点A4n12n,1故答案为:2n,1点评:此题考查了点的坐标的变化
35、规律,仔细观察图形,分别求出n1、2、3时对应的点A4n1的对应的坐标是解题的关键172021·潍坊,17,3分当白色小正方形个数等于1,2,3时,由白色小正方形和和黑色小正方形组成的图形分别如下图那么第个图形中白色小正方形和黑色小正方形的个数总和等于_用表示,是正整数答案:n24n考点:此题是一道规律探索题,考查了学生分析探索规律的能力点评:解决此类问题是应先观察图案的变化趋势,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出黑白正方形个数增加的变化规律,最后含有的代数式进行表示1. 2021衢州4分如图,在菱形ABCD中,边长为10,A=60°顺次连结
36、菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去那么四边形A2B2C2D2的周长是20;四边形A2021B2021C2021D2021的周长是【思路分析】根据菱形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可【解析】菱形ABCD中,边长为10,A=60°,顺次连结菱形ABCD各边中点,AA1D1是等边三角形,四边形A2B2C2D2是菱形,A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D
37、2=5,四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=AC=×5,A5D5=5×2,C5D5=AC=2×5,四边形A2021B2021C2021D2021的周长是:=故答案为:20,【方法指导】此题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据得出边长变化规律是解题关键1.2021山西,15,3分一组按规律排列的式子:,,.那么第n个式子是_【答案】n为正整数【解析】式子可写成:,,,分母为奇数,可写成2n-1,分子中字母a的指数为偶数2n。2.2021四川巴中,20,3分观察下面的单项式:a,2a2,4a3,8a4,根据你发现的规律,第8个式子是128a8考点:规律型:数字的变化类专题:规律型分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2n1,a的指数为n解答:解:第八项为27a8=128a8点评:此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些局部发生了变化,是按照什么规律变化的3.2021四川内江,24,6分如图,直线l:y=x,过点M2,0作x轴的垂线交直线l于点N,过点N作直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度保安服务合同风险控制范本发布2篇
- 二零二五年度智能医疗设备研发与销售合同汇编3篇
- 边坡雷达监测合同
- 毕业学年银行准予贷款的合同
- 二零二五年度建筑工程设计监理合同3篇
- 二零二五年度国有企业股权转让合同书2篇
- 二零二五年度房产自由经纪人佣金支付与权益保护合同3篇
- 二零二五年度新型环保涂料研发与生产合同3篇
- 二零二五年度房屋租赁分期付款合同模板2篇
- 二零二五年度安全生产标准化建设合同
- 桩身完整性考试试题及完整答案(包括低应变、钻芯、声波透射法)
- 储能系统的应急预案措施
- 大学生心理健康教育教学进度计划表
- 班主任育人故事(通用17篇)
- 食品公司冷库岗位风险告知卡
- 岗位安全培训考试题参考答案
- 南京某商城机电安装施工组织设计
- 娱乐场所消防安全操作规程
- 宗教教职人员备案表
- 八年级历史期末考试试卷质量分析试卷分析
- 烟草专业个人简历模板
评论
0/150
提交评论