版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 本章主要介绍经济时间序列的分解和平滑方本章主要介绍经济时间序列的分解和平滑方法。时间序列分解方法包括季节调整和趋势分解,法。时间序列分解方法包括季节调整和趋势分解,指数平滑是目前比较常用的时间序列平滑方法。指数平滑是目前比较常用的时间序列平滑方法。2 经济指标的经济指标的时间序列包含时间序列包含4种变动要素:长期种变动要素:长期趋势要素趋势要素T、循环要素、循环要素C、季节变动要素、季节变动要素S 和不规则要素和不规则要素I。代表经济时间序列长期的趋势特性。代表经济时间序列长期的趋势特性。是以数年为周期的一种周期性变动。是以数年为周期的一种周期性变动。是每年重复出现的循环变动,以是每年重复
2、出现的循环变动,以12个月或个月或4个季度为周期的周期性影响,由温度、降雨、每年中的假期和个季度为周期的周期性影响,由温度、降雨、每年中的假期和政策等因素引起。季节要素和循环要素的区别在于季节变动是政策等因素引起。季节要素和循环要素的区别在于季节变动是固定间距(如季或月)中的自我循环,而循环要素是从一个周固定间距(如季或月)中的自我循环,而循环要素是从一个周期变动到另一个周期,间距比较长且不固定的一种周期性波动。期变动到另一个周期,间距比较长且不固定的一种周期性波动。又称随机因子、残余变动或噪声,其变动又称随机因子、残余变动或噪声,其变动无规则可循,这类因素是由偶然发生的事件引起的,如罢工、无
3、规则可循,这类因素是由偶然发生的事件引起的,如罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误差等。差等。 30.760.860.961.061.161981198319851987198919911993199519970.890.951.001.061.11198119831985198719891991199319951997 4 季节性变动的发生,不仅是由于气候的直接影响,季节性变动的发生,不仅是由于气候的直接影响,而且社会制度及风俗习惯也会引起季节变动。经济统计中而且社会制度及风俗习惯也会引起季节变动。经济统计中的月度
4、和季度数据或大或小都含有季节变动因素,的月度和季度数据或大或小都含有季节变动因素,以月份以月份或季度作为时间观测单位的经济时间序列通常具有一年一或季度作为时间观测单位的经济时间序列通常具有一年一度的周期性变化,这种周期变化是由于季节因素的影响造度的周期性变化,这种周期变化是由于季节因素的影响造成的,在经济分析中称为季节性波动。经济时间序列的季成的,在经济分析中称为季节性波动。经济时间序列的季节性波动是非常显著的,它往往遮盖或混淆经济发展中其节性波动是非常显著的,它往往遮盖或混淆经济发展中其他客观变化规律,以致给经济增长速度和宏观经济形势的他客观变化规律,以致给经济增长速度和宏观经济形势的分析造
5、成困难和麻烦。因此,在进行经济增长分析时,必分析造成困难和麻烦。因此,在进行经济增长分析时,必须去掉季节波动的影响,将季节要素从原序列中剔除,这须去掉季节波动的影响,将季节要素从原序列中剔除,这就是所谓的就是所谓的“季节调整季节调整” (Seasonal Adjustment)。 5 移动平均法移动平均法(Moving Averages)的基本思路是很简单的基本思路是很简单的,是算术平均的一种。它具有如下特性:的,是算术平均的一种。它具有如下特性: 1. 周期(及其整数倍)与移动平均项数相等的周周期(及其整数倍)与移动平均项数相等的周期性变动基本得到消除期性变动基本得到消除; 2. 互相独立的
6、不规则变动得到平滑。互相独立的不规则变动得到平滑。 这两条特性可以证明。这两条特性可以证明。 6 时间序列数据时间序列数据 y = y1, y2, , yT ,T 为样本长度,在时为样本长度,在时点点 t 上的上的2k+1项移动平均值项移动平均值 MAt 的一般表示为的一般表示为(2.1.1)式中的式中的k为正整数,此时移动平均后的序列为正整数,此时移动平均后的序列MA的始端和末端的始端和末端各欠缺各欠缺k项值,需要用插值或其它方法补齐。项值,需要用插值或其它方法补齐。 kTkktykMAkkiitt,.,2, 1,1217 例如,常用的三项移动平均例如,常用的三项移动平均 (2.1.2) 两
7、端补欠项:两端补欠项:(2.1.3) (2.1.4) 1131iittyMA211231yyMA1231TTTyyMA1, 2Tt 考虑消除季节变动时,最简单的方法是对月度数据进行考虑消除季节变动时,最简单的方法是对月度数据进行12个月移动平均。此时,由于项数是偶数,故常常进行所谓个月移动平均。此时,由于项数是偶数,故常常进行所谓“移移动平均的中心化动平均的中心化”,即取连续的两个移动平均值的平均值作为,即取连续的两个移动平均值的平均值作为该月的值。该月的值。 8 (2.1.5) 因为因为12是偶数,通过求平均值可以达到中心化,即中心化是偶数,通过求平均值可以达到中心化,即中心化移动平均值为移
8、动平均值为 (2.1.6) 中心化移动平均的一般公式为中心化移动平均的一般公式为 (2.1.7)MAyyyyyy71212231312122MAyyy6 5121212.() /MAyyy7 5231312.() /MAyytt it iii12112112655611212126655yyytt iti6, 8 , 7Tt9 需要指出的是由于采用需要指出的是由于采用12个月中心化移动平均后,序列个月中心化移动平均后,序列的两端各有的两端各有6个欠项值,需要用插值或其它数值计算方法将其个欠项值,需要用插值或其它数值计算方法将其补齐。补齐。 上面介绍的上面介绍的12个月中心化移动平均是二次移动平
9、均,也个月中心化移动平均是二次移动平均,也可以用一次移动平均可以用一次移动平均(2.1.7)式表示,这种移动平均方法就叫做式表示,这种移动平均方法就叫做加权平均,其中每一期的权数不相等,下面介绍几种常用的加权平均,其中每一期的权数不相等,下面介绍几种常用的加权移动平均方法。加权移动平均方法。 10 除了上述移动平均方法外,除了上述移动平均方法外,X-11季节调整法中还采季节调整法中还采用亨德松用亨德松(Henderson)的的5, 9, 13和和23项加权移动平均。选项加权移动平均。选择特殊的移动平均法是基于数列中存在的随机因子,随择特殊的移动平均法是基于数列中存在的随机因子,随机因子越大,求
10、移动平均的项数应越多。机因子越大,求移动平均的项数应越多。11 1954年美国商务部国势普查局年美国商务部国势普查局(Bureau of Census,Depart- ment of Commerce)在美国全国经济研究局在美国全国经济研究局(NBER)战前研究的战前研究的移动平均比法移动平均比法(The Ratio-Moving Average Method)的基础上,的基础上,开发了关于季节调整的最初的电子计算机程序,开始大规模地开发了关于季节调整的最初的电子计算机程序,开始大规模地对经济时间序列进行季节调整。此后,季节调整方法不断改进,对经济时间序列进行季节调整。此后,季节调整方法不断改
11、进,每次改进都以每次改进都以X再加上序号表示。再加上序号表示。1960年,发表了年,发表了X-3方法,方法,X-3方法和以前的程序相比,特异项的代替方法和季节要素的方法和以前的程序相比,特异项的代替方法和季节要素的计算方法略有不同。计算方法略有不同。1961年,国势普查局又发表了年,国势普查局又发表了X-10方法。方法。X-10方法考虑到了根据不规则变动和季节变动的相对大小来方法考虑到了根据不规则变动和季节变动的相对大小来选择计算季节要素的移动平均项数。选择计算季节要素的移动平均项数。1965年年10月发表了月发表了X-11方方法,这一方法历经几次演变,已成为一种相当精细、典型的季法,这一方法
12、历经几次演变,已成为一种相当精细、典型的季节调整方法节调整方法 12 X-11方法是基于移动平均法的季节调整方法。它的特方法是基于移动平均法的季节调整方法。它的特征在于除了能适应各种经济指标的性质,根据各种季节调征在于除了能适应各种经济指标的性质,根据各种季节调整的目的,选择计算方式外,在不作选择的情况下,也能整的目的,选择计算方式外,在不作选择的情况下,也能根据事先编入的统计基准,按数据的特征自动选择计算方根据事先编入的统计基准,按数据的特征自动选择计算方式。在计算过程中可根据数据中的随机因素大小,采用不式。在计算过程中可根据数据中的随机因素大小,采用不同长度的移动平均,随机因素越大,移动平
13、均长度越大。同长度的移动平均,随机因素越大,移动平均长度越大。X-11方法是通过几次迭代来进行分解的,每一次对组成因方法是通过几次迭代来进行分解的,每一次对组成因子的估算都进一步精化。正因为如此,子的估算都进一步精化。正因为如此,X-11方法受到很高方法受到很高的评价,已为欧美、日本等国的官方和民间企业、国际机的评价,已为欧美、日本等国的官方和民间企业、国际机构构(IMF)等采用,成为目前普遍使用的季节调整方法。等采用,成为目前普遍使用的季节调整方法。13 美国商务部国势普查局的美国商务部国势普查局的X12季节调整程序是在季节调整程序是在X11方方法的基础上发展而来的,包括法的基础上发展而来的
14、,包括X11季节调整方法的全部功季节调整方法的全部功能,并对能,并对X11方法进行了以下方法进行了以下3方面的重要改进:方面的重要改进: (1) 扩展了贸易日和节假日影响的调节功能,增加了季扩展了贸易日和节假日影响的调节功能,增加了季节、趋势循环和不规则要素分解模型的选择功能;节、趋势循环和不规则要素分解模型的选择功能; (2) 新的季节调整结果稳定性诊断功能;新的季节调整结果稳定性诊断功能; (3) 增加增加X12-ARIMA模型的建模和模型选择功能。模型的建模和模型选择功能。 14 X12季节调整方法的核心算法是扩展的季节调整方法的核心算法是扩展的X11季节调整程序。季节调整程序。共包括共
15、包括4种季节调整的分解形式:乘法、加法、伪加法和对数种季节调整的分解形式:乘法、加法、伪加法和对数加法模型。注意采用乘法、伪加法和对数加法模型进行季节加法模型。注意采用乘法、伪加法和对数加法模型进行季节调整时,时间序列中不允许有零和负数。调整时,时间序列中不允许有零和负数。 加法模型加法模型 (2.2.1) 乘法模型:乘法模型: (2.2.2) 对数加法模型:对数加法模型: (2.2.3) 伪加法模型:伪加法模型: (2.2.4) ttttISTCYttttISTCYttttISTCYlnlnlnln) 1(ttttISTCY15 设设Yt 表示一个无奇异值的月度时间序列,通过预表示一个无奇异
16、值的月度时间序列,通过预测和回推来扩展序列使得在序列的尾端不需要对季节测和回推来扩展序列使得在序列的尾端不需要对季节调整公式进行修改。把调整公式进行修改。把Yt 分解为趋势循环项分解为趋势循环项TCt 、季节、季节项项St 和不规则要素和不规则要素It 。现以加法模型为例,介绍。现以加法模型为例,介绍X12季季节调整方法的核心算法(为叙述简便而不考虑补欠项节调整方法的核心算法(为叙述简便而不考虑补欠项的问题)。共分为三个阶段:的问题)。共分为三个阶段:16 通过中心化通过中心化12项移动计算平均趋势循环要素的初始估计项移动计算平均趋势循环要素的初始估计 (2.2.5) 计算计算SI项的初始估计
17、项的初始估计 (2.2.6) 通过通过33移动平均计算季节因子移动平均计算季节因子S的初始估计的初始估计 (2.2.7) 消除季节因子中的残余趋势消除季节因子中的残余趋势 (2.2.8) 季节调整结果的初始估计季节调整结果的初始估计 (2.2.9)12/ )2121(6556)1(ttttttYYYYYTC)1()1(tttTCYSI9/ )232()1 (24)1 (12)1 ()1 (12)1 (24)1 (ttttttSISISISISIS24/ )22()1 (6)1 (5)1 (5)1 (6)1 ()1 (ttttttSSSSSS)1()1(tttSYTCI17 利用利用Hender
18、son移动平均公式计算暂定的趋势循环要素移动平均公式计算暂定的趋势循环要素 (2.2.10) 计算暂定的计算暂定的SI项项 (2.2.11) 通过通过35项移动平均计算暂定的季节因子项移动平均计算暂定的季节因子 (2.2.12) 计算最终的季节因子计算最终的季节因子 (2.2.13) 季节调整的第二次估计结果季节调整的第二次估计结果 (2.2.14)HHjjtHjtTCIhTC)1 ()12()2()2()2(tttTCYSI15/ )23332()2(36)2(24)2(12)2()2(12)2(24)2(36)2(ttttttttSISISISISISISIS24/ )22()2(6)2(
19、5)2(5)2(6)2()2(ttttttSSSSSS)2()2(tttSYTCI18 利用利用Henderson移动平均公式计算最终的趋势循环要素移动平均公式计算最终的趋势循环要素 (2.2.15) 计算最终的不规则要素计算最终的不规则要素 (2.2.16) )2()12()3(jtHHjHjtTCIhTC)3()2()3(tttTCTCII19 本节主要介绍利用本节主要介绍利用EViews软件对一个月度或季度时间序软件对一个月度或季度时间序列进行季节调整的操作方法。在列进行季节调整的操作方法。在EViews工作环境中,打开一工作环境中,打开一个月度或季度时间序列的工作文件,双击需进行数据处
20、理的个月度或季度时间序列的工作文件,双击需进行数据处理的序列名,进入这个序列对象,在序列窗口的工具栏中单击序列名,进入这个序列对象,在序列窗口的工具栏中单击Proc按钮将显示菜单:按钮将显示菜单:20 X-11法是美国商务部标准的季节调整方法法是美国商务部标准的季节调整方法(乘法模型、加法乘法模型、加法模型模型),乘法模型适用于序列可被分解为季节调整后序列(趋,乘法模型适用于序列可被分解为季节调整后序列(趋势势循环循环不规则要素项)与季节项的乘积,加法模型适用于序不规则要素项)与季节项的乘积,加法模型适用于序列可被分解为季节调整后序列与季节项的和。乘法模型只适用列可被分解为季节调整后序列与季节
21、项的和。乘法模型只适用于序列值都为正的情形。于序列值都为正的情形。 21 如果在季节调整对话框中选择如果在季节调整对话框中选择X-11选项,调整后的序选项,调整后的序列及因子序列会被自动存入列及因子序列会被自动存入EViews工作文件中,在过程的工作文件中,在过程的结尾结尾X-11简要的输出及错误信息也会在序列窗口中显示。简要的输出及错误信息也会在序列窗口中显示。 关于调整后的序列的名字。关于调整后的序列的名字。EViews在原序列名后加在原序列名后加SA,但也可以改变调整后的序列名,这将被存储在工作文件中。但也可以改变调整后的序列名,这将被存储在工作文件中。 需要注意,季节调整的观测值的个数
22、是有限制的。需要注意,季节调整的观测值的个数是有限制的。X-11只作用于含季节数据的序列,需要至少只作用于含季节数据的序列,需要至少4整年的数据,最整年的数据,最多能调整多能调整20年的月度数据及年的月度数据及30年的季度数据。年的季度数据。 22 23 24 EViews是将美国国势调查局的是将美国国势调查局的X12季节调整程序直接季节调整程序直接安装到安装到EViews子目录中,建立了一个接口程序。子目录中,建立了一个接口程序。 EViews进进行季节调整时将执行以下步骤:行季节调整时将执行以下步骤: 1给出一个被调整序列的说明文件和数据文件;给出一个被调整序列的说明文件和数据文件; 2利
23、用给定的信息执行利用给定的信息执行X12程序;程序; 3返回一个输出文件,将调整后的结果存在返回一个输出文件,将调整后的结果存在EViews工工作文件中。作文件中。 X12的的EViews接口菜单只是一个简短的描述,接口菜单只是一个简短的描述,EViews还提供了一些菜单不能实现的接口功能,更一般的命令接口还提供了一些菜单不能实现的接口功能,更一般的命令接口程序。程序。 25 调用调用X12季节调整过程,在序列窗口选择季节调整过程,在序列窗口选择Procs/Seasonal Adjustment / Census X12,打开一个对话框:,打开一个对话框: X12方法有方法有5种选择框,下面分
24、别介绍。种选择框,下面分别介绍。26 这一部分指定季节调整分解的形式:乘法;加法;伪加这一部分指定季节调整分解的形式:乘法;加法;伪加法(此形式必须伴随法(此形式必须伴随ARIMA说明);对数加法。注意乘法、说明);对数加法。注意乘法、伪加法和对数加法不允许有零和负数。伪加法和对数加法不允许有零和负数。 当估计季节因子时,允许选择季节移动平均滤波(月别当估计季节因子时,允许选择季节移动平均滤波(月别移动平均项数),缺省是移动平均项数),缺省是X12自动确定。近似地可选择自动确定。近似地可选择(X11 default)缺省选择。需要注意如果序列短于缺省选择。需要注意如果序列短于20年,年,X12
25、不允许不允许指定指定315的季节滤波。的季节滤波。 27 X12将被调整的序列名作为缺省列在将被调整的序列名作为缺省列在Base name框中,框中,可以改变序列名。在下面的多选钮中选择要保存的季节调整可以改变序列名。在下面的多选钮中选择要保存的季节调整后分量序列,后分量序列,X12将加上相应的后缀存在工作文件中:将加上相应的后缀存在工作文件中: 最终的季节调整后序列(最终的季节调整后序列(SA);); 最终的季节因子(最终的季节因子(SF);); 最终的趋势最终的趋势循环序列(循环序列(TC);); 最终的不规则要素分量(最终的不规则要素分量(IR);); 季节季节/贸易日因子(贸易日因子(
26、D16);); 假日假日/贸易日因子(贸易日因子(D18);); 当估计趋势当估计趋势循环分量时,允许指定亨德松移动平均的循环分量时,允许指定亨德松移动平均的项数,可以输入大于项数,可以输入大于1和小于等于和小于等于101的奇数,缺省是由的奇数,缺省是由X12自动选择。自动选择。28 29 30 31 32 X12方法是基于移动平均法的季节调整方法。它的一个方法是基于移动平均法的季节调整方法。它的一个主要缺点是在进行季节调整时,需要在原序列的两端补欠项,主要缺点是在进行季节调整时,需要在原序列的两端补欠项,如果补欠项的方法不当,就会造成信息损失。如果补欠项的方法不当,就会造成信息损失。X12
27、- ARIMA方法是由方法是由X12方法和时间序列模型组合而成的季节调整方法。方法和时间序列模型组合而成的季节调整方法。通过用通过用ARIMA模型模型 (autoregressive integrated moving Average) 延长原序列,弥补了移动平均法末端项补欠值的问延长原序列,弥补了移动平均法末端项补欠值的问题。题。 建立建立ARIMA(p, d, q)模型,需要确定模型的参数,包括单模型,需要确定模型的参数,包括单整阶数整阶数d;自回归模型;自回归模型(AR)的延迟阶数的延迟阶数p;动平均模型;动平均模型(MA)的的延迟阶数延迟阶数q。也可以在模型中指定一些外生回归因子,建立
28、。也可以在模型中指定一些外生回归因子,建立ARIMAX模型。对于时间序列中的一些确定性的影响(如节模型。对于时间序列中的一些确定性的影响(如节假日和贸易日影响),应在季节调整之前去掉。假日和贸易日影响),应在季节调整之前去掉。 33 点击点击ARIMA Option标签,可出现下列对话框标签,可出现下列对话框: X12允许在季节调允许在季节调整前对被调整序列建整前对被调整序列建立一个合适的立一个合适的ARIMA模型。模型。34 在配备一个合适的在配备一个合适的ARMA模型之前允许转换序列:模型之前允许转换序列: (1) 缺省是不转换;缺省是不转换; (2) Auto选择是根据计算出来的选择是根
29、据计算出来的AIC准则自动确定是不准则自动确定是不做转换还是进行对数转换;做转换还是进行对数转换; (3) Logistic选择将序列选择将序列 y 转换为转换为 log(y/(1-y), y序列的序列的值要求在值要求在0和和1之间;之间; (4) Box-Cox power选择要求提供一个参数选择要求提供一个参数 ,做下列,做下列转换:转换:0/ ) 1(0)log(2ifyifytt35 允许在允许在2种不同的方法中选择种不同的方法中选择ARIMA模型。模型。 要求提供要求提供ARIMA模型阶数的说明(模型阶数的说明(p d q)(P D Q) p 非季节的非季节的AR阶数阶数 d 非季节
30、的差分阶数非季节的差分阶数 q 非季节的非季节的MA阶数阶数 P 季节季节AR阶数阶数 D 季节差分阶数季节差分阶数 Q 季节季节MA阶数阶数 36 缺省的指定是缺省的指定是“(0 1 1)(0 1 1)”是指季节的是指季节的IMA模型:模型: (2.5.2)L是滞后算子,这里季节差分是指是滞后算子,这里季节差分是指 (1 Ls )yt = yt yt s ,季度数,季度数据时据时s =4;月度数据时;月度数据时s =12。下面是一些例子:。下面是一些例子:(1 0 0) (0 1 1) (1 0 1)(1 0 0) ttyL)1 (ttLyL)1 ()1 (ttssLyLL)1 ()1)(1
31、 (1 注意在模型中总的注意在模型中总的AR、MA、和差分的系数不超过、和差分的系数不超过25;AR或或MA参数的最大延迟为参数的最大延迟为24;在;在ARIMA因子中的最大差分阶数因子中的最大差分阶数不超过不超过3。 tsstsLLyLL)1)(1 ()1)(1 (137 X12将从一个外部文件提供的说明集合中选择将从一个外部文件提供的说明集合中选择ARIMA模型。模型。EViews将利用一个包含一系列缺省模型指定说明的文件将利用一个包含一系列缺省模型指定说明的文件(X12A.MDL):): (0 1 1)(0 1 1) * (0 1 2)(0 1 1) X (2 1 0)(0 1 1) X
32、 (0 2 2)(0 1 1) X (2 1 2)(0 1 1) 缺省说明用缺省说明用“*”表示,除最后一个外,中间的用表示,除最后一个外,中间的用“X”结尾。结尾。有有2个选择:个选择: Select best 检验列表中的所有模型,选一个最小预测误差检验列表中的所有模型,选一个最小预测误差的模型,缺省是第一个模型。的模型,缺省是第一个模型。 Select by out-of-sample-fit 对模型的评价用外部样本误差,对模型的评价用外部样本误差,缺省是用内部样本预测误差。缺省是用内部样本预测误差。38 允许在允许在ARIMA模型中指定一些外生回归因子,利用多模型中指定一些外生回归因子
33、,利用多选钮可选择常数项,或季节虚拟变量,事先定义的回归因子选钮可选择常数项,或季节虚拟变量,事先定义的回归因子可以捕捉贸易日和节假日的影响。可以捕捉贸易日和节假日的影响。39 由每天经济活动的总和组成的月度时间序列受该月各由每天经济活动的总和组成的月度时间序列受该月各周的影响,这种影响称为贸易日影响(或周工作日影响)。周的影响,这种影响称为贸易日影响(或周工作日影响)。例如,对于零售业在每周的星期一至星期五的销售额比该例如,对于零售业在每周的星期一至星期五的销售额比该周的星期六、星期日要少得多。因此,在某月如果多出的周的星期六、星期日要少得多。因此,在某月如果多出的星期天数是一周的前五天,那
34、么该月份销售额将较低;如星期天数是一周的前五天,那么该月份销售额将较低;如果多出的星期天数是一周的星期六、星期日,那么该月份果多出的星期天数是一周的星期六、星期日,那么该月份销售额将较高。又如,在流量序列中平均每天的影响将产销售额将较高。又如,在流量序列中平均每天的影响将产生生“月长度月长度”影响。因为在每年中二月份的长度是不相同影响。因为在每年中二月份的长度是不相同的,所以这种影响不可能完全被季节因素承受。二月份残的,所以这种影响不可能完全被季节因素承受。二月份残留的影响被称为润年影响。留的影响被称为润年影响。40 Young(1965)讨论了浮动贸易日的影响,讨论了浮动贸易日的影响,Cle
35、veland and Grupe(1983)讨论了固定贸易日的影响。贸易日影响和季节讨论了固定贸易日的影响。贸易日影响和季节影响一样使得比较各月的序列值变得困难,而且不利于研究影响一样使得比较各月的序列值变得困难,而且不利于研究序列间的相互影响。由于这个原因,当贸易日影响的估计在序列间的相互影响。由于这个原因,当贸易日影响的估计在统计上显著时,通常在季节调整之前先把贸易日的影响从序统计上显著时,通常在季节调整之前先把贸易日的影响从序列中剔除。在调整的内容中,形成了又一个分解要素:贸易列中剔除。在调整的内容中,形成了又一个分解要素:贸易日要素日要素 D。 在在X12季节调整中,假设贸易日影响要素
36、包含在不规则季节调整中,假设贸易日影响要素包含在不规则要素中,即不规则要素的形式是要素中,即不规则要素的形式是 ID,假设已从原序列,假设已从原序列 Y 中中分解出分解出 ID。然后用回归分析求出星期一,星期二,。然后用回归分析求出星期一,星期二,星期日的相应权重,从而可以将星期日的相应权重,从而可以将 ID 分解为真正的不规则要分解为真正的不规则要素素 I 和贸易日要素和贸易日要素 D。 41 美国的圣诞节、复活节及感恩节等节假日对经济时间序美国的圣诞节、复活节及感恩节等节假日对经济时间序列也会产生影响。例如,圣诞节的影响可以增加当周或前一列也会产生影响。例如,圣诞节的影响可以增加当周或前一
37、周商品的零售额,或者是降低特定工厂在圣诞节前几天的产周商品的零售额,或者是降低特定工厂在圣诞节前几天的产量。在量。在X12方法中,贸易日和节假日影响可以从不规则要素方法中,贸易日和节假日影响可以从不规则要素中同时估计得到。在中同时估计得到。在X12方法中,可以对不规则要素建立方法中,可以对不规则要素建立ARIMAX模型,包括贸易日和节假日影响的回归变量,而且模型,包括贸易日和节假日影响的回归变量,而且还可以指明奇异值的影响,并在估计其他回归影响的同时消还可以指明奇异值的影响,并在估计其他回归影响的同时消除它们。注意除它们。注意EViews中的节假日调整只针对美国,不能应用中的节假日调整只针对美
38、国,不能应用于其他国家。于其他国家。 42 可以在进行季节可以在进行季节调整和利用调整和利用ARIMA模模型得到用于季节调整型得到用于季节调整的向前的向前/向后预测值之向后预测值之前,先去掉确定性的前,先去掉确定性的影响(例如节假日和影响(例如节假日和贸易日影响)。首先贸易日影响)。首先要选择要选择:(Ajustment Option)是否进行这项调整?,是否进行这项调整?,确定在那一个步骤里确定在那一个步骤里调整:在调整:在ARIMA步骤,步骤,还是还是X-11步骤?步骤? 43 Trading Day Effects消除贸易日影响有消除贸易日影响有2种选择,依赖于种选择,依赖于序列是流量序
39、列还是存量序列(诸如存货)。对于流量序列还序列是流量序列还是存量序列(诸如存货)。对于流量序列还有有2种选择,是对周工作日影响进行调整还是对仅对周日种选择,是对周工作日影响进行调整还是对仅对周日-周末周末影响进行调整。存量序列仅对月度序列进行调整,需给出被观影响进行调整。存量序列仅对月度序列进行调整,需给出被观测序列的月天数。测序列的月天数。 Holiday effects 仅对流量序列做节假日调整。对每一个节仅对流量序列做节假日调整。对每一个节日,必须提供一个数,是到这个节日之前影响的持续天数。日,必须提供一个数,是到这个节日之前影响的持续天数。 Easter 复活节复活节 Labor 美国
40、、加拿大的劳工节,九月第一个星期一美国、加拿大的劳工节,九月第一个星期一 Thanksgiving 感恩节(在美国为感恩节(在美国为11月第月第4个星期个星期4;加拿;加拿大为大为10月第月第2个星期个星期1) Christmas 圣诞节圣诞节 注意这些节日只针对美国,不能应用于其他国家。注意这些节日只针对美国,不能应用于其他国家。44 外部影响调整包括附加的外部冲击外部影响调整包括附加的外部冲击(addtive outlier,AO)和水平变换和水平变换(level shift,LS)。附加的外部冲击。附加的外部冲击(AO)调整是指调整是指对序列中存在的奇异点数据进行调整,水平变换对序列中存
41、在的奇异点数据进行调整,水平变换(LS)是指对是指对水平上发生突然变化的序列的处理。水平上发生突然变化的序列的处理。04000080000120000160000200000240000280000197619781980198219841986 45通过对通过对ARIMAX模型中的回归方程添加外部冲击和水平变模型中的回归方程添加外部冲击和水平变换回归变量,可以处理奇异点数据和在水平上发生突然变化的换回归变量,可以处理奇异点数据和在水平上发生突然变化的序列。在对序列进行预调整的同时得到外部影响调整是序列。在对序列进行预调整的同时得到外部影响调整是X12-ARIMA模型的特殊能力。模型的特殊能力
42、。 在奇异点在奇异点t0的外部冲击变量:的外部冲击变量: (2.2.26) 在水平位移点在水平位移点t0的水平变换变量:的水平变换变量: (2.2.27) 00)(010ttttAOtt00)(010ttttLStt46 外部影响调整也是分别在外部影响调整也是分别在ARIMA步骤和步骤和X11步骤中进行。步骤中进行。然而,必须在然而,必须在X11步骤中作了贸易日步骤中作了贸易日/节日调整,才能在节日调整,才能在X11步骤中做外部调整,而且只能做附加的外部调整;步骤中做外部调整,而且只能做附加的外部调整;47 在在ARIMA步骤中有步骤中有4种外部调整:种外部调整: 附加的外部调整;附加的外部调
43、整; 水平变换;水平变换; 暂时的水平变化;暂时的水平变化; 弯道影响。弯道影响。 48 49 这项选择提供了各种诊断:这项选择提供了各种诊断: (Stability Analysis of Seasonals) Sliding spans 移动间距移动间距 检验被调整序列在固定大小的检验被调整序列在固定大小的移动样本上的变化;移动样本上的变化; Historical revisions 历史修正检验被调整序列增加一历史修正检验被调整序列增加一个新观测值,即增加一个样本时的变化。个新观测值,即增加一个样本时的变化。 (Other Diagnostics) 还可以选择显示各种诊断输出。还可以选择
44、显示各种诊断输出。50 X-11法与移动平均法的最大不同是:法与移动平均法的最大不同是:X-11法中季节法中季节因子年与年有可能不同,而在移动平均法中,季节因子因子年与年有可能不同,而在移动平均法中,季节因子被假设为是一样的。被假设为是一样的。 51 TRAMO(Time Series Regression with ARIMA Noise, Missing Observation, and Outliers)用来估计和预测具有缺失用来估计和预测具有缺失观测值、非平稳观测值、非平稳ARIMA误差及外部影响的回归模型。它能误差及外部影响的回归模型。它能够对原序列进行插值,识别和修正几种不同类型的
45、异常值,够对原序列进行插值,识别和修正几种不同类型的异常值,并对工作日变化及复活节等特殊回归因素及假定为并对工作日变化及复活节等特殊回归因素及假定为ARIMA过程的误差项的参数进行估计。过程的误差项的参数进行估计。 SEATS(Signal Extraction in ARIMA Time Series)是基于是基于ARIMA模型来对时间序列中不可观测成分进行估计。模型来对时间序列中不可观测成分进行估计。 这两个程序往往联合起来使用,先用这两个程序往往联合起来使用,先用TRAMO对数据进对数据进行预处理,然后用行预处理,然后用SEATS将时间序列分解为趋势要素、循环将时间序列分解为趋势要素、循
46、环要素、季节要素及不规则要素要素、季节要素及不规则要素4个部分。这两个程序是由个部分。这两个程序是由Victor Gomez 和和Agustin Maravall 开发的。开发的。 52 当选择了当选择了Pross/Seasonal Adjustment/Tramo Seats 时,时,EViews执行外部程序,将数据输给外部程序,然后将结果返执行外部程序,将数据输给外部程序,然后将结果返回回EViews。 53 本章第本章第2节介绍的季节调整方法可以对经济时间序列进节介绍的季节调整方法可以对经济时间序列进行分解,但在季节调整方法中,趋势和循环要素视为一体行分解,但在季节调整方法中,趋势和循环
47、要素视为一体不能分开。本节专门讨论如何将趋势和循环要素进行分解不能分开。本节专门讨论如何将趋势和循环要素进行分解的方法。测定长期趋势有多种方法,比较常用的方法有回的方法。测定长期趋势有多种方法,比较常用的方法有回归分析方法、移动平均法、阶段平均法归分析方法、移动平均法、阶段平均法(phase average,PA方法方法)、HP滤波方法和频谱滤波方法(滤波方法和频谱滤波方法(frequency (band-pass) filer, BP滤波)。本节主要介绍滤波)。本节主要介绍HP滤波方法和滤波方法和BP滤波方法。滤波方法。 54 在宏观经济学中,人们非常关心序列组成成分中的长在宏观经济学中,人
48、们非常关心序列组成成分中的长期趋势,期趋势,Hodrick-Prescott滤波是被广泛使用的一种方法。滤波是被广泛使用的一种方法。该方法在该方法在Hodrick and Prescott(1980) 分析战后美国经济周分析战后美国经济周期的论文中首次使用。我们简要介绍这种方法的原理。期的论文中首次使用。我们简要介绍这种方法的原理。设设Yt是包含趋势成分和波动成分的经济时间序列,是包含趋势成分和波动成分的经济时间序列,YtT是是其中含有的趋势成分,其中含有的趋势成分, YtC是其中含有的波动成分。则是其中含有的波动成分。则 (2.3.1) 计算计算HP滤波就是从滤波就是从Yt中将中将YtT 分
49、离出来分离出来 。ctTttYYYTt,2, 155 一般地,时间序列一般地,时间序列Yt中的不可观测部分趋势中的不可观测部分趋势YtT常被定常被定义为下面最小化问题的解:义为下面最小化问题的解: (2.3.2)其中:其中:c(L)是延迟算子多项式是延迟算子多项式 (2.3.3) 将式将式(2.3.3)代入式代入式(2.3.2),则,则HP滤波的问题就是使下面损滤波的问题就是使下面损失函数最小,即失函数最小,即 (2.3.4) TtTtTttYLcYY122min LLLc111 1221112minTtTtTtTtTtTtTttYYYYYY56 最小化问题用最小化问题用c(L)YtT2 来调
50、整趋势的变化,并随着来调整趋势的变化,并随着 的增的增大而增大。这里存在一个权衡问题,要在趋势要素对实际序列大而增大。这里存在一个权衡问题,要在趋势要素对实际序列的跟踪程度和趋势光滑度之间作一个选择。的跟踪程度和趋势光滑度之间作一个选择。 = 0 时,满足最小时,满足最小化问题的趋势等于序列化问题的趋势等于序列Yt; 增加时,估计趋势中的变化总数增加时,估计趋势中的变化总数相对于序列中的变化减少,即相对于序列中的变化减少,即 越大,估计趋势越光滑;越大,估计趋势越光滑; 趋趋于无穷大时,估计趋势将接近线性函数。一般经验地,于无穷大时,估计趋势将接近线性函数。一般经验地, 的取的取值如下:值如下
51、: 月度数据,季度数据,年度数据14400160010057 HP滤波的运用比较灵活,它不象阶段平均法那滤波的运用比较灵活,它不象阶段平均法那样依赖于经济周期峰和谷的确定。它把经济周期看样依赖于经济周期峰和谷的确定。它把经济周期看成宏观经济波动对某些缓慢变动路径的偏离,这种成宏观经济波动对某些缓慢变动路径的偏离,这种路径在期间内单调地增长,所以称之为趋势。路径在期间内单调地增长,所以称之为趋势。HP滤滤波增大了经济周期的频率,使周期波动减弱。波增大了经济周期的频率,使周期波动减弱。 58 使用使用Hodrick-Prescott滤波来平滑序列,选择滤波来平滑序列,选择Procs/ Hodric
52、k Prescott Filter出现下面的出现下面的HP滤波对话框:滤波对话框: 首先对平滑后的序列给一个名字,首先对平滑后的序列给一个名字,EViews将默认一个名字,也可将默认一个名字,也可填入一个新的名字。然后给定平滑参数的值,年度数据取填入一个新的名字。然后给定平滑参数的值,年度数据取100,季度和月,季度和月度数据分别取度数据分别取1600和和14400。不允许填入非整数的数据。点击。不允许填入非整数的数据。点击OK后,后,EViews与原序列一起显示处理后的序列。注意只有包括在当前工作文件与原序列一起显示处理后的序列。注意只有包括在当前工作文件样本区间内的数据才被处理,平滑后序列
53、区间外的数据都为样本区间内的数据才被处理,平滑后序列区间外的数据都为NA。 59 先做季节调整得到趋势先做季节调整得到趋势-循环要素序列,记为循环要素序列,记为TC,然,然后利用后利用HP滤波方法求中国社会消费品零售总额月度时间序滤波方法求中国社会消费品零售总额月度时间序列列(1990:12007:6)6061 首先对季度首先对季度GDP做季节调整,然后对得到的趋势做季节调整,然后对得到的趋势-循环序循环序列列GDP.TC序列序列利用利用HP滤波方法求中国滤波方法求中国GDP季度时间序列的季度时间序列的趋势项趋势项(1997:12007:6)。6263 设设Yt为我国的季度为我国的季度GDP指
54、标指标(1997年年1季度季度2007年年4季度季度),利用季节调整方法将利用季节调整方法将GDP中的季节因素和不规则因素去掉,得中的季节因素和不规则因素去掉,得到到GDP_TC序列。本例的潜在产出序列。本例的潜在产出Y*,即趋势利用,即趋势利用HP滤波计算滤波计算出来的出来的YtT来代替,来代替,GDP的循环要素的循环要素Yt序列由式序列由式(2.3.6)计算:计算:(2.3.6)TttctYYYTt,2, 1 64 图图2.7显示的显示的GDP的循环要素的循环要素YtC序列实际上就是围绕趋序列实际上就是围绕趋势线上下的波动,称为势线上下的波动,称为GDP缺口序列。它是一个绝对量的产缺口序列
55、。它是一个绝对量的产出缺口。也可以用相对量表示产出缺口,本例用出缺口。也可以用相对量表示产出缺口,本例用Gapt来表示相来表示相对产出缺口,可由下式计算得到:对产出缺口,可由下式计算得到: (2.3.7) TtTtttYYYGap10065 20世纪以来,利用统计方法特别是时间序列分析方法研世纪以来,利用统计方法特别是时间序列分析方法研究经济时间序列和经济周期的变动特征得到越来越广泛的应究经济时间序列和经济周期的变动特征得到越来越广泛的应用。自时间序列分析产生以来,一直存在两种观察、分析和用。自时间序列分析产生以来,一直存在两种观察、分析和解释时间序列的方法。第一种是直接分析数据随时间变化的解
56、释时间序列的方法。第一种是直接分析数据随时间变化的结构特征,即所谓时域(结构特征,即所谓时域(time domain)分析法,使用的工)分析法,使用的工具是自相关(或自协方差)函数和差分方程;另一种方法是具是自相关(或自协方差)函数和差分方程;另一种方法是把时间序列看成不同谐波的叠加,研究时间序列在频率域把时间序列看成不同谐波的叠加,研究时间序列在频率域(frequency domain)里的结构特征,由于这种分析主要是)里的结构特征,由于这种分析主要是用功率谱的概念进行讨论,所以通常称为谱分析。用功率谱的概念进行讨论,所以通常称为谱分析。66 谱分析的基本思想是:把时间序列看作是互不相关谱分
57、析的基本思想是:把时间序列看作是互不相关的周期(频率)分量的叠加,通过研究和比较各分量的的周期(频率)分量的叠加,通过研究和比较各分量的周期变化,以充分揭示时间序列的频域结构,掌握其主周期变化,以充分揭示时间序列的频域结构,掌握其主要波动特征。因此,在研究时间序列的周期波动方面,要波动特征。因此,在研究时间序列的周期波动方面,它具有时域方法所无法企及的优势。它具有时域方法所无法企及的优势。 67 设时间序列数据设时间序列数据 X=(x1, x2, , xT),T 为样本长度。谱为样本长度。谱分析(分析(spectral analysis)的实质是把时间序列)的实质是把时间序列 X 的变动分的变
58、动分解成不同的周期波动之和。考虑时间序列解成不同的周期波动之和。考虑时间序列 X 由对应于不同由对应于不同频率的多个周期变动的和构成,假定存在频率的多个周期变动的和构成,假定存在n个频率个频率 1, 2, , n,则,则这里,这里,uj ,vj 是随机变量。是随机变量。 (对所有的对所有的i,j) (对所有的(对所有的 i j) Tttvtuxnjjjjjt,.,2 , 1, )sincos(10)()(jjvEuE2)var()var(jjjvu), 2 , 1(nj0)(),cov(jijivuEvu0),(),cov(jijivvEuu68 可以计算得到可以计算得到 X 的方差:的方差:
59、 在这里很有趣的是,在这里很有趣的是,X 的方差可以由的方差可以由n个方差个方差 j2 的和来的和来表示。表示。 j2是对应于频率是对应于频率 j 的循环变动的循环变动 uj cos j t+vj sin j t 的方的方差,表示了对随机过程全变动的贡献,下图是对应于频率的差,表示了对随机过程全变动的贡献,下图是对应于频率的方差图。方差图。2121)sincos()var(jnjjjjjnjttvtuEx69 频率频率 和周期和周期 p 有如下关系:有如下关系:频率频率 周期周期 = p = 2 (2.3.8) 时间序列时间序列 X 的变动可以分解成各种不同频率波动的叠的变动可以分解成各种不同
60、频率波动的叠加和,根据哪种频加和,根据哪种频率的波动具有更大的贡献率来解释率的波动具有更大的贡献率来解释 X 的的周期波动的成分,这就是谱分析(频率分周期波动的成分,这就是谱分析(频率分析)名称的缘由。析)名称的缘由。这就是说当具有各种周期的无数个波包含于景气变动中时,这就是说当具有各种周期的无数个波包含于景气变动中时,看看哪个周期看看哪个周期(频率频率)的波强烈地表现现实景气变动。谱分析的波强烈地表现现实景气变动。谱分析中的核心概念是功率谱密度函数(简称功率谱),它集中反中的核心概念是功率谱密度函数(简称功率谱),它集中反映了时间序列中不同频率分量对功率或方差的贡献程度。映了时间序列中不同频
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标投标流程优化问题解析
- 跨境出租车租赁服务协议
- 在线票务网站管理办法
- 乙供物资库存周转率优化策略
- 广州市电信服务代建制管理法则
- 学校园区道路改造合同模板
- 家政服务博雅聘用合同
- 婚礼策划现场制片服务合同
- 制服破损更换政策
- 城市燃气管道铺设定向钻施工合同
- 2024年新高考全国Ⅰ卷语文高考真题(答案版)
- 2024年度战略顾问聘用协议范本版
- 街道社区城管工作目标考核细则
- 义务教育化学课程标准(2022年版)解读
- 2024年《中华人民共和国监察法》知识测试题库及答案
- 中职英语高二期中考试试卷(含答案)
- 2024年秋季新人教版7年级上册数学教学课件 2.3.1 第2课时 有理数的混合运算
- 《反义词探秘》(教案)-2024-2025学年统编版语文一年级上册
- 2024年港澳台华侨生入学考试物理试卷试题真题(含答案详解)
- 2024年中国护坡网市场调查研究报告
- 2024年全国职业院校技能大赛(新材料智能生产与产品检验赛项)考试题库
评论
0/150
提交评论