版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第8讲立体几何中的向量方法(二)【高考会这样考】 考查用向量方法求异面直线所成的角,直线与平面所成的角、二面角的大小【复习指导】 复习中要掌握空间角的类型及各自的范围,掌握求空间角的向量方法,特别注意两平面法向量的夹角与二面角的关系基础梳理1空间的角 (1)异面直线所成的角 如图,已知两条异面直线a、b,经过空间任一点O作直线aa,bb. 则把a与b所成的锐角(或 直角)叫做异面直线a与b所成的角(或夹角) (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 直线垂直于平面,则它们所成的角是直角; 直线和平面平行,或在平面内,则它们所成的角是0的角 (3)二面角的
2、平面角 如图在二面角l的棱上任取一点O,以点O为垂足,在半平面和内分别作垂直于棱l的射线 OA和OB,则AOB叫做二面角的平面角2空间向量与空间角的关系 (1)设异面直线l1,l2的方向向量分别为m1、m2,则l1与l2的夹角满足cos |cos|.(2)设直线l的方向向量和平面的法向量分别为m、n,则直线l与平面的夹角满足 sin |cos|. (3)求二面角的大小 如图,AB、CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小 如图,n1、n2分别是二面角l的两个半平面、的法向量,则二面角的大小满足 cos cos或cos三种成角 (1)异面直线所成的角的范围是; (2)直线与平面所
3、成角的范围是; (3)二面角的范围是0,易误警示 利用平面的法向量求二面角的大小时,当求出两半平面、的法向量n1、n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1、n2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点双基自测1如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a(1,0,1),b(0,1,1),那么,这条斜线与平面所成的角是() A90 B30 C45 D60解析cosa,b,又a,b0,a,b60.答案D2已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角的大小为() A45 B135 C45或135 D9
4、0解析cosm,n,即m,n45,其补角为135,两平面所成的二面角为45或135.答案C3已知向量m、n分别是直线l和平面的方向向量、法向量,若cos,则l与所成的角为() A30 B60 C120 D150解析设l与所成的角为,则sin |cosm,n|,30.答案A4在如图所示的正方体A1B1C1D1ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为() A B C. D. 解析如图建立直角坐标系Dxyz,设DA1,A(1,0,0),C(0,1,0),E.则(1,1,0),若异面直线DE与AC所成的角为,cos |cos,|.答案D5如图所示,在三棱柱ABCA1B1C1中
5、,AA1底面ABC,ABBCAA1,ABC90,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是_解析建立如图所示的空间直角坐标系设ABBCAA12,则C1(2,0,2),E(0,1,0),F(0,0,1)则(0,1,1),(2,0,2),2,cos,EF和BC1所成角为60.答案60考向一求异面直线所成的角【例1】已知ABCDA1B1C1D1是底面边长为1的正四棱柱,高AA12,求(1)异面直线BD与AB1所成角的余弦值;(2)四面体AB1D1C的体积审题视点 建立恰当的空间直角坐标系,用向量法求解,注意角的范围解(1)如图建立空间直角坐标系A1xyz,由已知条件:B(1,0
6、,2),D(0,1,2),A(0,0,2),B1(1,0,0)则(1,1,0),(1,0,2)设异面直线BD与AB1所成角为,cos |cos,|.(2)VAB1D1CVABCDA1B1C1D14VCB1C1D1. 异面直线所成角范围是(0,90,若异面直线a,b的方向向量为m,n,异面直线a,b所成角为,则cos |cosm,n|.解题过程是:(1)建系;(2)求点坐标;(3)表示向量;(4)计算【训练1】已知正方体ABCDA1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为_解析如图建立直角坐标系Dxyz,设DA1,由已知条件A(1,0,0),E,B(1,1,0),
7、C(0,1,0),(1,0,0)设异面直线AE与BC所成角为.cos |cos,|.答案考向二利用向量求直线与平面所成的角【例2】如图所示,已知点P在正方体ABCDABCD的对角线BD上,PDA60.(1)求DP与CC所成角的大小;(2)求DP与平面AADD所成角的大小审题视点 转化为三角形内角求解不易,故考虑用向量法求解,注意向量夹角与直线与平面所成角的关系解如图所示,以D为原点,DA为单位长度建立空间直角坐标系Dxyz.则(1,0,0),(0,0,1)连接BD,BD.在平面BBDD中,延长DP交BD于H.设(m,m,1)(m0),由已知,60,即|cos,可得2m.解得m,所以.(1)因为
8、cos,所以,45,即DP与CC所成的角为45.(2)平面AADD的一个法向量是(0,1,0)因为cos,所以,60,可得DP与平面AADD所成的角为30. (1)异面直线的夹角与向量的夹角有所不同,应注意思考它们的区别与联系(2)直线与平面的夹角可以转化成直线的方向向量与平面的法向量的夹角,由于向量方向的变化,所以要注意它们的区别与联系【训练2】已知三棱锥PABC中,PA平面ABC,ABAC,PAACAB,N为AB上一点,AB4AN,M、S分别为PB、BC的中点(1)证明:CMSN;(2)求SN与平面CMN所成角的大小解:设PA1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空
9、间直角坐标系如图则P(0,0,1),C(0,1,0),B(2,0,0),M,N,S.(1)证明:(1,1,),因为00,所以CMSN.(2),设a(x,y,z)为平面CMN的一个法向量,则取x2,得a(2,1,2)因为|cosa,|,所以SN与平面CMN所成角为45.考向三利用向量求二面角【例3】如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB60,AB2AD,PD底面ABCD.(1)证明:PABD;(2)若PDAD,求二面角APBC的余弦值审题视点 会判断法向量的方向,找准向量夹角与二面角是相等还是互补(1)证明因为DAB60,AB2AD,由余弦定理得BDAD.从而BD2AD2AB
10、2,故BDAD.又PD底面ABCD,可得BDPD.又ADPDD.所以BD平面PAD.故PABD.(2)解如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,0),C(1,0),P(0,0,1)(1,0),(0,1),(1,0,0)设平面PAB的法向量为n(x,y,z),则即因此可取n(,1,)设平面PBC的法向量为m,则可取m(0,1,),则cosm,n.故二面角APBC的余弦值为. 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐
11、角还是钝角【训练3】 如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,APAB2,BC2,E,F分别是AD,PC的中点(1)证明:PC平面BEF;(2)求平面BEF与平面BAP夹角的大小(1)证明如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系APAB2,BCAD2,四边形ABCD是矩形,A,B,C,D,P的坐标为A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2)又E,F分别是AD,PC的中点,E(0,0),F(1,1)(2,2,2),(1,1),(1,0,1)2420,2020.,PCBF,PCEF.又
12、BFEFF,PC平面BEF.(2)解由(1)知平面BEF的一个法向量n1(2,2,2),平面BAP的一个法向量n2(0,2,0),n1n28.设平面BEF与平面BAP的夹角为,则cos |cosn1,n2|,45.平面BEF与平面BAP的夹角为45.阅卷报告对法向量夹角与二面角大小关系认识不清导致失误【问题诊断】 立体几何是高考的重点和热点内容,而求空间角是重中之重,利用空间向量求空间角的方法固定,思路简洁,但在利用平面的法向量求二面角大小时,两个向量的夹角与二面角相等还是互补是这种解法的难点,也是学生的易错易误点【防范措施】 正确判断法向量的方向,同指向二面角内或外则向量夹角与二面角互补,一
13、个指向内另一个指向外则相等【示例】 如图,四边形ABCD为正方形,PD平面ABCD,PDQA,QAABPD.(1)证明:平面PQC平面DCQ;(2)求二面角QBPC的余弦值实录如图,以D为坐标原点,线段DA的长为单位长度,射线DA为x轴的正半轴建立空间直角坐标系Dxyz.(1)依题意有Q(1,1,0),C(0,0,1),P(0,2,0)则(1,1,0),(0,0,1),(1,1,0)所以0,0.即PQDQ,PQDC.又DQDCD,故PQ平面DCQ.又PQ平面PQC,所以平面PQC平面DCQ.错因如图平面BPC,与平面BPQ的法向量分别为n(0,1,2),m(1,1,1),设二面角Q BPC的大小为,则m,n,m,n(2)依题意有B(1,0,1),(1,0,0),(1,2,1)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计实习期工作总结
- 会计个人述职报告怎么写
- 三千字军训感言(5篇)
- 医师先进事迹材料
- 书法协会工作计划书(11篇)
- 书法活动宣传的标语(130句)
- 上课打瞌睡检讨书
- 七夕节活动策划方案范文15篇
- 个人的收入证明(6篇)
- 白蚂蚁课件教学课件
- CNAS-CL01:2018(ISO17025:2017)改版后实验室首次内审及管理评审资料汇总
- 护理不良事件-PPT课件
- 商业银行两地三中心数据容灾备份方案建议书
- 体育运动中的二次函数
- 修改留言条(课堂PPT)
- 铜排载流量表
- 2014121085852风力发电机组出质保期验收标准
- 中南大学湘雅医院特色专病门诊和多学科联合门诊管理办法
- 乒乓球比赛分组对阵表(8人、16人、32人)
- 消防控制室记录表
- 小学三年级下册道德与法治课件-8.大家的朋友-部编版(15张)课件
评论
0/150
提交评论