版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上圆锥曲线设而不求法典型试题在求解直线与圆锥曲线相交问题,特别是涉及到相交弦问题,最值问题,定值问题的时候,采用“设点代入”(即“设而不求”)法可以避免求交点坐标所带来的繁琐计算,同时还要与韦达定理,中点公式结合起来,使得对问题的处理变得简单而自然,因而在做圆锥曲线题时注意多加训练与积累.1. 通常情况下如果只有一条直线,设斜率相对容易想一些,或者多条直线但是直线斜率之间存在垂直,互为相反数之类也可以设斜率需要注意的是设斜率的时候需要考虑:(1) 斜率是否存在(2) 直线与曲线必须有交点也就是判别式必须大于等于0这种设斜率最后利用韦达定理来计算并且最终消参法,思路清晰,
2、计算量大,特别需要仔细,但是大多也是可以消去高次项,故不要怕大胆计算,最终一定能得到所需要的结果。2.设点比较难思考在于参数多,计算起来容易信心不足,但是在对于定点定值问题上,只要按题目要求计算,将相应的参数互带,然后把点的坐标带入曲线方程最终必定能约分,消去参数。这种方法灵活性强,思考难度大,但是计算简单。例1:已知双曲线x2-y2/2=1,过点M(1,1)作直线L,使L与已知双曲线交于Q1、Q2两点,且点M是线段Q1Q2的中点,问:这样的直线是否存在?若存在,求出L的方程;若不存在,说明理由。 解:假设存在满足题意的直线L,设Q1(
3、X1,Y1),Q2(X2,Y2)代人已知双曲线的方程,得x12- y12/2=1 , x22-y22/2=1 -,得(x2-x1)(x2+x1)-(y2-y1)(y2+y1)/2=0。当x1=x2时,直线L的方程为x=1,此时L与双曲线只有一个交点(1,0)不满足题意;当x1x2时,有(y2-y1)/(x2-x1)=2(x2+x1)/(y2+y1)=2.故直线L的方程为y-1=2(x-1)检验:由y-1=2(x-1),x2-y2/2=1,得2x2-4x+3=0,其判别式=-8 0,此时L与双曲线无交点。
4、0; 综上,不存在满足题意的直线1、设、分别是椭圆的左、右焦点. ()若P是该椭圆上的一个动点,求的最大值和最小值; ()是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.2、已知平面上一定点C(4,0)和一定直线为该平面上一动点,作,垂足为Q,且. (1)问点P在什么曲线上?并求出该曲线的方程; (2)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,2)?若存在,求出k的值,若不存在,说明理由.3、已知椭圆C1的方程为,双曲线C2的左、右焦点分别为
5、C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点. ()求双曲线C2的方程;()若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.4、已知圆上的动点,点Q在NP上,点G在MP上,且满足. (I)求点G的轨迹C的方程; (II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.练习5,已知,椭圆C以过点A(1,),两个焦点为(1,0)(1,0)。(1) 求椭圆C的方程;(2) E,F是椭圆C
6、上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 练习6,已知直线经过椭圆 的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点(I)求椭圆的方程;()求线段MN的长度的最小值;练习7已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为(I) 证明线段是圆的直径;(II)当圆C的圆心到直线X-2Y=0的距离的最小值为时,求p的值答案:练习11、解:()易知 设P(x,y),则 ,即点P为椭圆短轴端点时,有最小值3;当,即点P为椭圆长轴端点时,有最大值4 ()假设存在满足条件的直线l易知点A(5
7、,0)在椭圆的外部,当直线l的斜率不存在时,直线l与椭圆无交点,所在直线l斜率存在,设为k直线l的方程为 由方程组依题意 当时,设交点C,CD的中点为R,则又|F2C|=|F2D| 20k2=20k24,而20k2=20k24不成立, 所以不存在直线,使得|F2C|=|F2D|综上所述,不存在直线l,使得|F2C|=|F2D| 2、解:(1)设P的坐标为,由得(2分) (4分)化简得 P点在双曲线上,其方程为(6分) (2)设A、B点的坐标分别为、,由 得(7分),(8分)AB与双曲线交于两点,>0,即解得(9分)若以AB为直径的圆过D(0,2),则ADBD,即,(10分)解得,故满足题
8、意的k值存在,且k值为.3解:()设双曲线C2的方程为,则故C2的方程为(II)将由直线l与椭圆C1恒有两个不同的交点得即 .由直线l与双曲线C2恒有两个不同的交点A,B得 解此不等式得 由、得故k的取值范围为4、解:(1)Q为PN的中点且GQPNGQ为PN的中垂线|PG|=|GN|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长,半焦距,短半轴长b=2,点G的轨迹方程是 5分 (2)因为,所以四边形OASB为平行四边形若存在l使得|=|,则四边形OASB为矩形若l的斜率不存在,直线l的方程为x=2,由矛盾,故l的斜率存在.7分设l的方程为 9分把、代入存在直线使
9、得四边形OASB的对角线相等.练习3()解 由题意,c1,可设椭圆方程为。 因为A在椭圆上,所以,解得3,(舍去)。所以椭圆方程为 ()证明 设直线方程:得,代入得 设(,),(,)因为点(1,)在椭圆上,所以, 。又直线AF的斜率与AE的斜率互为相反数,在上式中以代,可得, 。所以直线EF的斜率。即直线EF的斜率为定值,其值为。 解4 方法一(I)由已知得,椭圆的左顶点为上顶点为 故椭圆的方程为()直线AS的斜率显然存在,且,故可设直线的方程为,从而由得0设则得,从而 即又由得故又 当且仅当,即时等号成立 时,线段的长度取最小值5.解析:(I)证明1: 整理得: 设M(x,y)是以线段AB为直径的圆上的任意一点,则即整理得:故线段是圆的直径证明2: 整理得: .(1)设(x,y)是以线段AB为直径的圆上则即去分母得: 点满足上方程,展开并将(1)代入得:故线段是圆的直径证明3: 整理得: (1)以线段AB为直径的圆的方程为展开并将(1)代入得:故线段是圆的直径(II)解法1:设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设圆心C到直线x-2y=0的距离为d,则当y=p时,d有最小值,由题设得.解法2: 设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土工程质量管理方案
- 二零二五年度绿色地产房地产工程招标合同3篇
- 2024年渤海船舶职业学院高职单招语文历年参考题库含答案解析
- 宝贝学常见词
- 授权函完整版本
- 二零二五年能源管理服务简易借款合同3篇
- 二零二五年新型电子产品动产交易合同2篇
- 2024年河南物流职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年阜阳市第二人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年阜康准东石油医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 产品实现生产过程流程图
- 老年人的安全保护及预防措施课件
- ICU镇痛镇静治疗知情同意书
- 政治表现及具体事例三条经典优秀范文三篇
- 高考诗歌鉴赏专题复习:题画抒怀诗、干谒言志诗
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
评论
0/150
提交评论