版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初三第一学期期末学业水平调研数学参考答案及评分标准 20181一、选择题(本题共16分,每小题2分)12345678BACBDCAD二、填空题(本题共16分,每小题2分)9或 1060 11(答案不唯一) 12(,0)136 142 151016三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,一条弧所对的圆周角是它所对圆心角的一半; 或:直径所对的圆周角为直角,三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,直角三角形两个锐角互余; 或:直径所对的圆周角为直角,为锐角,.三、解答题(本题共68分,第1722题,每小题5分;第2326小题,每小
2、题6分;第2728小题,每小题7分)17解:原式 = 3分 = = 5分18解: 是关于x的方程的一个根, . . 3分 . 5分19解:作ADBC于点D, ADB=ADC=90°. AC=5, . 2分 在RtACD中,. 3分 AB, 在RtABD中,. 4分 . 5分20解:(1). 3分(2)由题意,当时,. 5分 答:平均每天要卸载48吨.21证明: B=90°,AB=4,BC=2, . CE=AC, . CD=5, . 3分 B=90°,ACE=90°, BAC+BCA=90°,BCA+DCE=90°. BAC=DCE.
3、ABCCED. 5分22BC,BC, 3分 5分23解:(1) 函数()的图象经过点B(-2, 1), ,得. 1分 函数()的图象还经过点A(-1,n), ,点A的坐标为(-1,2). 2分 函数的图象经过点A和点B, 解得 4分(2)且. 6分24(1)证明: BD平分ABC, ABD=CBD. DEAB, ABD=BDE. CBD=BDE. 1分 ED=EF, EDF=EFD. EDF+EFD+EDB+EBD=180°, BDF=BDE+EDF=90°. ODDF. 2分 OD是半径, DF是O的切线. 3分(2)解: 连接DC, BD是O的直径, BAD=BCD=9
4、0°. ABD=CBD,BD=BD, ABDCBD. CD=AD=4,AB=BC. DE=5, ,EF=DE=5. CBD=BDE, BE=DE=5. ,. AB=8. 5分 DEAB, ABFMEF. . ME=4. . 6分25(1)0.9. 1分 (2)如右图所示. 3分 (3)0.7, 4分 . 6分26解:(1)2 1分(2) 该二次函数的图象开口向下,且对称轴为直线, 当时,y取到在上的最大值为2. . ,. 3分 当时,y随x的增大而增大, 当时,y取到在上的最小值. 当时,y随x的增大而减小, 当时,y取到在上的最小值. 当时,y的最小值为. 4分(3)4. 6分27
5、解:(1)(2,0)(答案不唯一). 1分(2)如图,在x轴上方作射线AM,与O交于M,且使得,并在AM上取点N,使AM=MN,并由对称性,将MN关于x轴对称,得,则由题意,线段MN和上的点是满足条件的点B. 作MHx轴于H,连接MC, MHA=90°,即OAM+AMH=90°. AC是O的直径, AMC=90°,即AMH+HMC=90°. OAM=HMC. . . 设,则, ,解得,即点M的纵坐标为. 又由,A为(-1,0),可得点N的纵坐标为, 故在线段MN上,点B的纵坐标t满足:. 3分 由对称性,在线段上,点B的纵坐标t满足:.4分 点B的纵坐标t的取值范围是或. (3)或. 7分28解:(1)否. 1分(2) 作PDAB于D,则PDB=PDA=90°, ABP=30°, . 2分 , . . 由PAB是锐角,得PAB=45°. 3分 另证:作点关于直线的对称点,连接,则. ABP=30°, . 是等边三角形. . , . 2分 . . . 3分 ,证明如下: 4分 作ADAP,并取AD=AP,连接DC,DP. DAP=90°. BAC=90°, BAC+CAP=DAP+CAP, 即 BAP=CAD. AB=AC,AD=AP, BAPCAD. 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江工程学院《新媒体概论》2021-2022学年第一学期期末试卷
- 黑龙江工程学院《汽车设计》2022-2023学年第一学期期末试卷
- 黑龙江工程学院《混凝土结构设计原理》2023-2024学年第一学期期末试卷
- 黑龙江工程学院《地图制图学基础》2022-2023学年第一学期期末试卷
- 黑龙江东方学院《项目投资评估》2022-2023学年第一学期期末试卷
- 黑龙江东方学院《市政工程构造与施工技术》2022-2023学年第一学期期末试卷
- 黑龙江东方学院《摄影像与剪辑技术》2021-2022学年第一学期期末试卷
- 黑龙江东方学院《互换性与测量技术》2022-2023学年第一学期期末试卷
- 黑龙江大学《数学建模》2021-2022学年第一学期期末试卷
- 声乐作品的选择在声乐训练中的重要性
- 2024年2024年离婚协议书模板
- 2024年柔性直流输电系统宽频振荡分析与控制报告-华北电力大学(刘崇茹)
- 教师备课教案模板
- 2024年山东省日照市中考数学试题卷(含答案)
- 液化石油气泄漏应急处理考核试卷
- 早产儿低体重儿护理课件
- 大宗贸易居间合同协议书
- 2024年借款展期合同参考样本(三篇)
- 2024年秋新北师大版一年级上册数学教学课件 4.6 乘车
- 上海市2023-2024学年八年级下学期期末数学练习卷(解析版)
- 2024灯光亮化维修合同
评论
0/150
提交评论