六年级上册数学专项练习分数及应用题_第1页
六年级上册数学专项练习分数及应用题_第2页
六年级上册数学专项练习分数及应用题_第3页
六年级上册数学专项练习分数及应用题_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.六年级数学上册有关【分数及应用题】知识汇总解分数应用题本卷须知:一找二看三判断1找单位“1的方法:从含有分率的句子中找,“的前或“比后的规那么。当句子中的单位“1不明显时,把原来的量看做单位“1。 当关键句中的单位“1不明显时,要把关键句补充完好,补充成“谁是谁的几分之几或“甲比乙多几分之几、 “甲比乙少几分之几的形式。“甲比乙多几分之几表示甲比乙多的数占乙的几分之几;“甲比乙少几分之几表示甲比乙少数占乙的几分之几。2找到单位“1后,分析问题,单位“1用乘法,未知单位“1用除法注意:求单位“1是最后一步用除法,其余计算应在前。数量关系: 单位“1×对应分率=对应数量;对应量

2、7;对应分率=单位“1的量。3单位“1不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1,统一分率的单位“1,然后再相加减。4单位“1的特点:单位“1为分母;单位“1为不变量。5“一个数的几分之几是多少,求这个数的解题方法:可以用列方程的方法来解,也可以直接用除法。设单位“1的量为x,列方程解答。对应数量÷对应分率=单位“1的总数量。6工程问题:把工作总量看作单位“1,工作效率=1/工作时间注:在单位换算中,要弄清需要换算的单位之间的进率是多少。认识比1、比的意义:比表示两个数相除的关系。2、比与分数、除法的关系:a:b=a÷b=a/bb0互相关系区别:比前项

3、比号:后项比值关系分数分子分数线-分母分数值数除法被除数除号÷除数商运算3、比值:比的前项除以比的后项,所得的商就叫比值。注:比值是一个数,可以是整数、分数、小数,不带单位名称。4、比的根本性质:比的前项和后项同时乘或除以一个一样的数0除外,比值不变。5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外没有其它公因数。6、化简:运用比的根本性质比照进展化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。注:化简比和求比值是不同的两个概念【意义不同,方法不同,结果不同】7、按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按

4、比例分配问题。解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数乘法来计算。分数乘法的计算方法:1分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进展约分,再应用前面计算法那么。注:【任何整数都可以看作为分母是1的分数】2分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。3分数连乘:通过几个分数的分子与分母直接约分再进展计算。整数、分数、百分数应用题构造类型一求甲是乙的几倍或几分之几或百分之几的应用题。解法:甲数除以乙数例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分

5、之几?或几分之几?二求甲数的几倍或几分之几或百分之几是多少的应用题。解答分数应用题,首先要确定单位“1,在单位“1确定以后,一个详细数量总与一个详细分数分率相对应,这种关系叫“量率对应,这是解答分数应用题的关键。求一个数的几倍几分之几或百分之几是多少用乘法,单位“1×分率=对应数量例:六年级有学生180人,五年级的学生人数是六年级人数的65。五年级有学生多少人?180×65=150三甲数的几倍或几分之几或百分之几是多少,求甲数即求标准量或单位“1的应用题。解法:对应数量÷对应分率=单位“1例:育红小学六年级男生有120人,占参加兴趣活动小组人数的53. 六年级参加

6、兴趣活动小组人数共有学生多少人?120÷53=200人常考题;第一类:1、 配件工厂加工一批零件,第一天加工了了方案的,第二天又加工了方案的,第三天又加工了80个,结果超过了方案的,这批零件共有多少个?2、 修一条路,第一天修了全长的30%,第二天修了全长的40%,第一天比第二天少修了10米,求这条路多长?3、 一个兴趣小组女生占40%,后来又转来4名女生,这时女生占总人数的,这个兴趣小组原来有多少人?4、 某科技创造兴趣小组女生占,后来又转来了15名女生,这时,女生占总人数的60%,求男生多少人?5、 阅览室有36名学生,其中女生占,后又来了几名女生,这时女生的人数占总人数的,求来

7、了几名女生?6、 合唱团里男生是女生的,后来调来8名男生,这时男女生人数的比是7:10,合唱团原来有学生多少名?7、 一项工作,甲单独要做12天,乙单独15天,二人同时工作,中途甲有事分开,剩下的由乙完成,从开场到工作完毕,共用了10天,问:甲比乙少干了几天?8、 李师傅方案完成350个零件,上半月完成这批零件的60%,下半月完成这批零件的,李师傅实际完成多少零件?9、 小李方案加工一批零件,上半月完成方案的30%,下半月再完成990件就超额完成,小李方案完成多少?作业:一项工程,甲队独做要10天完成,乙队独做要15天完成,甲队先做2天后,剩下的再由两队合做,还要多少天可以完成任务?一项工程,

8、甲单独做20天完成,乙单独做30天完成。甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。乙请假多少天?第四类:10、 两个仓库共存一批粮食,第一仓库存的比这批粮食的总量的多10吨,第二仓库比总量的少2吨,求这批粮食共多少吨?11、 甲乙两个粮库,原来甲库与乙库存粮的吨数比是5:7,现从乙粮库调出6吨粮食到甲粮库,甲粮库与乙粮库存粮的吨数比就变成了4:5,原来乙粮库存粮多少吨?12、 小明读一本书,已读的页数与总页数的比是3:7,后来又读了33页,这时已读的页数与总页数的比是5:8,求这本书的页数?13、 小明读一本书,已读的页数与末读页数的比是3:7,后来又读了33页,这

9、时已读的页数与末读页数的比是5:8,求这本书的页数?14、 两份快餐48元,假如由乐乐付钱,那么乐乐剩下的钱数与明明的钱数之比是2:5,假如天天付钱,那么天天剩下的钱数与乐乐的钱数之比是8:3,两人原来各有多少钱?15、 小林和小莉一起吃快餐,两份共24元,小林说:“假如我付钱,那么我剩下的钱数与你的钱数比是2:5小莉说:“假如我付钱,那么我剩下的钱数与你的钱数比是13:8。求原来两个各有多少钱?16、 一本图书售价4元,假如乐乐买了这本书,那么乐乐剩下的钱与天天的钱数之比为2:5,假如天天买了这本书,那么天天钱与乐乐的钱数之比为13:8,问:两个人原来各有多少钱?要练说,得练听。听是说的前提

10、,听得准确,才有条件正确模拟,才能不断地掌握高一级程度的语言。我在教学中,注意听说结合,训练幼儿听的才能,课堂上,我特别重视老师的语言,我对幼儿说话,注意声音清楚,上下起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种兴趣活动,培养幼儿边听边记,边听边想,边听边说的才能,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的才能,强化了记忆

11、,又开展了思维,为说打下了根底。这个工作可让学生分组负责搜集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。如此下去,除假期外,一年便可以积累40多那么材料。假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?“师之概念,大体是从先秦时期的“师长、师傅、先生而来。其中“师傅更早那么意指春秋时国君的老师。?说文解字?中有注曰:“师教人以道者之称也。“师之含义,如今泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师的原意并非由“老而形容“师。“老在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老“师连用最初见于?史记?,有“荀卿最为老师之说法。渐渐“老师之说也不再有年龄的限制,老少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论