Z-Transform(Z变换)_第1页
Z-Transform(Z变换)_第2页
Z-Transform(Z变换)_第3页
Z-Transform(Z变换)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Property 1: The ROC of X(z) consists of a ring in the zplane centered about the origin.X(z)的ROC在z平面内以原点为中心的圆环。Chapter 10 The Z-Transform10.1 The Z-Transform(Z变换)Property 2: The ROC does not contain any poles.ROC内不包括任何极点。Property 3: If xn is of finite duration, then the ROC is the entire z-plane, exc

2、ept possibly z=0 and/or z=.如果xn是有限长序列,那么ROC就是整个z平面,可能除去z=0和/或z= 。Property 4: If xn is right-sided/sequence, and if the circle |z|= r0 is in the ROC, then all finite values of z for which |z|> r0 will also be in the ROC.如果xn是右边序列,而且如果|z|= r0的圆位于ROC内 ,那么|z|> r0的全部有限 z值都一定在 ROC内。Property 5: If xn

3、 is left sided sequence, and if the circle |z|= r0 is in the ROC, then all values of z for which 0<|z|< r0 will also be in the ROC.如果xn是左边序列,而且如果|z|= r0的圆位于ROC内 ,那么满足0<|z|< r0的全部 z 值都一定在 ROC内。Property 6: If xn is two sided, and if the circle |z|= r0 is in the ROC, then the ROC will consi

4、st of a ring in the z-plane that includes the circle |z|= r0 .如果x(t)是双边序列,而且如果|z|= r0的圆位于ROC内 ,那么该ROC就一定是由包括|z|= r0的圆环所组成。Property 7: If the z-transform X(z) of xn is rational, then its ROC is bounded by poles or extends to infinity. 如果xn的z变换X(z)是有理的,那么它的ROC是被极点所界定或延伸到无限远。Property 8: If the z-transf

5、orm X(z) of xn is rational, and if xn is right sided, then the ROC is the region in the z-plane outside the outmost pole-i.e., outside the circle of radius equal to the largest magnitude of the poles of X(z). Furthermore, if xn is causal(i.e., if it is right sided and equal to 0 for n<0), then th

6、e ROC also includes z=.如果xn的z变换X(z)是有理的,而且若xn是右边序列,那么,ROC就位于z 平面内最外层极点的外边;也就是半径等于X(z)极点中最大模值的圆的外边。而且,若xn 是因果序列(即xn 为n<0等于0的右边序列),那么,ROC也包括z= 。Property 9: If the z-transform X(z) of xn is rational, and if xn is left sided, then the ROC is the region in the z-plane inside the innermost nonzero pole

7、-i.e., inside the circle of radius equal to the smallest magnitude of the poles of X(z) other than any at z=0 and extending inward to and possibly including z=0. In particular, if xn is anti-causal(i.e., if it is left sided and equal to 0 for n>0), then the ROC also includes z=0.如果xn的z变换X(z)是有理的,

8、而且若xn是左边序列,那么,ROC就位于z 平面内最里层的非零极点的里边;也就是半径等于X(z) 中除去z=0的极点中最小模值的圆的里边,并且,向内延伸到可能包括z=0。特别是,若xn 是反因果序列(即xn 为n>0等于0的左边序列),那么,ROC也包括z=0 。10.2 The Region of Convergence for the Z-Transform(Z变换收敛域)10.3 The Inverse Z-Transform(Z反变换)10.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plo

9、t(由零极点图对傅立叶变换进行几何求值)Learn it by yourself!10.5 Properties of the Z-Transform(Z变换的性质)10.7 Analysis and Characterization of LTI Systems Using the Z-Transform(利用Z变换分析和表征LTI系统)A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinit

10、y.一个离散时间LTI系统当且仅当它的系统函数的ROC是在某一个圆的外边,且包括无限远点,该系统就是因果的。A discrete-time LTI system with rational system function H(z) is causal if and only if: (a) the ROC is exterior of a circle outside the outermost pole; and (b)with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot b

11、e greater than the order of the denominator.一个具有有理系统函数H(z)的LTI系统是因果的,当且仅当(a)ROC位于最外层极点外边某一个圆的外面;和(b)若H(z)表示成z的多项式之比,其分子的阶次不能大于分母的阶次。2. Stability(稳定性)An LTI system is stable if and only if the ROC of its system function H(z) includes the unit circle, z=1.一个LTI系统当且仅当它的系统函数H(z)的ROC包括单位圆,z=1时,该系统就是稳定的。A

12、 causal LTI system with rational system function H(z) is stable if and only if all of the poles of H(z) lie inside the unit circle -i.e., they must all have magnitude smaller then 1.一个具有有理系统函数H(z)的因果LTI系统, 当且仅当H(z)的全部极点都位于单位圆内时,也即全部极点其模均小于1时,该系统就是稳定的。10.8 System Function Algebra and Block Diagram Representations(系统函数的代数属性与方框图表示)1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论