高一数学解三角形知识点总结及习题练习_第1页
高一数学解三角形知识点总结及习题练习_第2页
高一数学解三角形知识点总结及习题练习_第3页
高一数学解三角形知识点总结及习题练习_第4页
高一数学解三角形知识点总结及习题练习_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、解三角形一、基础知识梳理1正弦定理:= =2R(R为ABC外接圆半径),了解正弦定理以下变形:最常用三角形面积公式:2正弦定理可解决两类问题:1两角和任意一边,求其它两边和一角; (唯一解)2两边和其中一边对角,求另一边的对角,进而可求其它的边和角(解可能不唯一)了解:已知a, b和A, 用正弦定理求B时的各种情况:3余弦定理 :4余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角(解 可能不唯一)2课前热身 1(教材习题改编)已知ABC中,a,b,B60°,

2、那么角A等于()A135° B90° C45° D30°2在ABC中,则A等于()A60° B45° C120° D30°3在ABC中,若A120°,AB5,BC7,则ABC的面积是()A. B. C. D.4 (2010年高考广东卷)已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则sinA_.55在ABC中,如果A60°,c,a,则ABC的形状是_ 3考点突破考点一 正弦定理的应用 利用正弦定理可解决以下两类三角形:一是已知两角和一角的对边,求其他边角;二是已知

3、两边和一边的对角,求其他边角例1、(1)(2010年高考山东卷)在ABC中,角A,B,C所对的边分别为a,b,c.若a,b2,sin Bcos B,则角A的大小为_(2)满足A45°,a2,c的ABC的个数为_考点二 余弦定理的应用利用余弦定理可解两类三角形:一是已知两边和它们的夹角,求其他边角;二是已知三边求其他边角由于这两种情况下的三角形是惟一确定的,所以其解也是惟一的例2、在ABC中,内角A,B,C对边的边长分别是a,b,c,已知c2,C.(1)若ABC的面积等于,求a,b的值;(2)若sinB2sinA,求ABC的面积考点三 三角形形状的判定判断三角形的形状,应围绕三角形的边

4、角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别例3、(2010年高考辽宁卷)在ABC中,a,b,c分别为内角A,B,C的对边,且2asin A(2bc)sin B(2cb)sin C.(1)求A的大小;(2)若sinBsinC1,试判断ABC的形状互动探究 1若本例条件变为:sinC2sin(BC)cosB,试判断三角形的形状方法感悟:方法技巧解三角形常见题型及求解方法(1)已知两角A、B与一边a,由ABC180°及,可求出角C,再求出b,c.(2)已知两边b,c与其夹角A,由a2

5、b2c22bccosA, 求出a,再由正弦定理,求出角B,C.(3)已知三边a、b、c,由余弦定理可求出角A、B、C.(4)已知两边a、b及其中一边的对角A,由正弦定理求出另一边b的对角B,由C(AB),求出C,再由,求出c,而通过求B时,可能出现一解,两解或无解的情况,其判断方法如下表:失误防范1用正弦定理解三角形时,要注意解题的完整性,谨防丢解2要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;三角形的内角和定理与诱导公式结合产生的结论:sinAsin(BC),cosAcos(BC),sincos,sin2Asin2(BC

6、),cos2Acos2(BC)等3对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”五、规范解答(本题满分12分)(2010年高考大纲全国卷)在ABC中,D为边BC上的一点,BD33,sinB,cosADC,求AD的长【解】由cosADC>0知B<,由已知得cosB,sinADC,4分从而sinBADsin(ADCB)sinADCcosBcosADCsinB××.9分由正弦定理得,所以AD25.12分【名师点评】本题主要考查正弦定理、三角恒等变换在解三角形中的应用,同时,对逻辑推理能力及运算求解能力进行了考查本题从所处位置及解答过程来看,难度在中档

7、以下,只要能分析清各量的关系,此题一般不失分出错的原因主要是计算问题名师预测1在ABC中,a15,b10,A60°,则cosB()AB.C D.2已知ABC中,角A、B、C的对边分别为a、b、c,且SABC,那么角C_.3在ABC中,角A、B、C的对边分别为a、b、c,且满足(2bc)·cosAacosC0.(1)求角A的大小;(2)若a,SABC,试判断ABC的形状,并说明理由解:(1)法一:(2bc)cosAacosC0,由正弦定理得,(2sinBsinC)cosAsinAcosC0,2sinBcosAsin(AC)0,即sinB(2cosA1)0.0<B<,sinB0,cosA.0<A<,A.法二:(2bc)cosAacosC0,由余弦定理得,(2bc)·a·0,整理得b2c2a2bc,cosA.0<A<,A.(2)SABCbcsinA,即bcsin,bc3,a2b2c22bccosA,b2c26,由得bc,ABC为等边三角形课后作业1 在ABC中,角均为锐角,且则ABC的形状是( )A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等腰三角形 2 边长为的三角形的最大角与最小角的和是( )A. B. C. D. 3 在ABC中,则的最大值是_.4 在ABC中,若_.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论