生命科学概论结课论文_第1页
生命科学概论结课论文_第2页
生命科学概论结课论文_第3页
生命科学概论结课论文_第4页
生命科学概论结课论文_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基因芯片技术进展及应用 基因芯片技术进展及应用作者:单位:摘要: 二十世纪是物理科学的世纪,而二十一世纪则是生命科学的世纪。生命科学,尤其是生物技术的迅猛发展,不仅与人类健康,农业发展以及生存环境密切相关,而且还将对其它学科的发展起到促进作用,所谓"今天的科学,明天的技术,后天的生产"。而生命科学的基础性研究是现代生物技术的源泉、科学和技术创新的关键。随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功

2、能及基因的多样性倾斜。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。关键字: 基因芯片;核酸探针序列;杂交一、基因芯片简介基因芯片,也叫DNA芯片,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(

3、也叫分子探针)。 由于被固定的分子探针在基质上形成不同的探针阵列,利用分子杂交及平行处理原理,基因芯片可对遗传物质进行分子检测,因此可用于进行基因研究、法医鉴定、疾病检测和药物筛选等。基因芯片技术具有无可比拟的高效、快速和多参量特点,是在传统的生物技术如检测、杂交、分型和DNA测序技术等方面的一次重大创新和飞跃。二、基因芯片技术基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,

4、能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列

5、的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法,即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人

6、工合成寡核苷酸序列,然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。 生物芯片技术是于90年代初期随着人类基因组计划的顺利进行而诞生,它是通过

7、像集成电路制作过程中半导体光刻加工那样的微缩技术,将现在生命科学研究中许多不连续的、离散的分析过程,如样品制备、化学反应和定性、定量检测等手段集成于指甲盖大小的硅芯片或玻璃芯片上,使这些分析过程连续化和微型化。也就是说将现在需要几间实验室、检验室完成的技术,制作成具有不同用途的便携式生化分析仪,使生物学分析过程全自动化,分析速度成千上万倍地提高,所需样品及化学试剂成千上万倍地减少。可以预见,在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 生物芯片技术是目前应用前景最好的DNA分析技术之一,分析对象可

8、以是核酸、蛋白质、细胞、组织等。目前全世界用生物芯片进行疾病诊断还处于研究阶段,国外已将其用于观察癌基因及肌萎缩等一些遗传病基因的表达和突变情况。 生物芯片技术还可以用于治疗,例如已开发出在4平方毫米的芯片上布满400根有药物的针,定时定量为病人进行药物注射。另外,科学家还在考虑制作定时释放胰岛素治疗糖尿病的生物芯片微泵及可以置入心脏的芯片起搏器等。生物芯片技术与组合化学相结合将开辟另一个极有价值的应用方向,即为新药研制提供超高通量筛选平台技术,这必将使新药研究开发和传统中药的成分评估获得重大突破。三、基因芯片的应用技术举例基因表达图谱的绘制是目前基因芯片应用最广泛的领域,也是人类基因组工程的

9、重要组成部分,它提供了从整体上分析细胞表达状况的信息,而且为了解与某些特殊生命现象相关的基因表达提供了有力的工具,对于基因调控以及基因相互作用机理的探讨有重要作用。人类基因组编码大约100000个不同的基因,因此,具有监测大量mRNA的实验工具很重要。基因芯片技术可清楚地直接快速地检测出以1300000水平出现的mRNA,且易于同时监测成千上万的基因。目前,已能够在1.6cm2面积上合成和阅读含400000个探针的阵列,可监测10000个基因的表达状况。斯坦福大学的Brown用制备的酵母cDNA芯片,获得酵母在不同细胞周期状态以及在热休克冷休克处理后其2473个基因的表达图谱,较直观地反应了不

10、同条件和状态下基因转录调控水平,从而为寻找基因调控的机理提供了一条有效的途径。定量监测大量基因表达水平在阐述基因功能、探索疾病原因及机理、发现可能的诊断及治疗的靶基因等方面具有重要价值的。Derisi等选用来自恶性肿瘤细胞系UACC903中的1161个cDNA克隆制成芯片,通过比较正常和肿瘤细胞的表达差异,发现在恶性肿瘤细胞中P21基因处于失活或关闭状态,但在逆转的细胞系中呈高表达。Golub等应用cDNA 芯片检测基因表达的差异进行癌症的分类,成功地区分出急性髓细胞性白血病(AML)和急性淋巴细胞性白血病(ALL),预期这种方法还能诊断出新的白血病种类。在炎症性疾病类风湿性关节炎(

11、RA)和炎症性肠病(IBD)的基因表达研究中,可检测出炎症疾病诱导的基因如TNF-、IL或粒细胞集落刺激因子,同时发现一些以前未发现的基因如HME基因和黑色素瘤生长刺激因子。目前,大量涌现的人类ESTs给cDNA微阵列提供了丰富的序列资源,数据库中ESTs代表了人类基因,因此ESTs微阵列可在缺乏其它序列信息的条件下用于基因发现和基因表达检测,从而加快人类基因组功能分析的进程。基因芯片的另一重要应用是基因多态位点及基因突变的检测,现有大量实例说明,基因组多样性的研究对阐明不同人群和个体在疾病的易感性和抵抗性方面表现出的差异具有重要意义,一旦对基因组的编码序列进行系统筛查,就有可能找出与疾病易感

12、性有关的大量基因变异。基因芯片技术可大规模地检测和分析DNA的变异及多态性。Wang等应用高密度基因芯片对2.3Mb人类基因的SNP 进行筛查,确定了3241个SNPs位点,显示出大规模鉴定人类基因型的可能。Lipshutz等人采用含18,495个寡核苷酸探针的微阵列,对HIV-1基因组反转录酶基因(rt)及蛋白酶基因(pro)的高度多态性进行了筛选,这些变异将导致病毒对多种抗病毒药物包括AZT、ddI、ddC等表现出抗性,因此rt与pro的变异与多态性的检测具有重要的临床意义。随着大量疾病相关基因的发现,变异与多态性分析将在疾病的诊断与治疗方面体现出越来越重要的价值。Affymet

13、rix公司已将P53 基因的全长序列和已知突变的序列制成探针集成在芯片上,可对与P53 基因突变相关的癌症进行早期诊断。Hacia等采用含96600个20聚寡核苷酸高密度阵列对遗传性乳腺和卵巢癌BRCA1基因3.45kb的第11个外显子进行杂合变异筛选,结果准确诊断出15个已知变异的患者样品中的14个,而在20个对照样品中未发现1例假阳性,表明DNA芯片技术在某些疾病相关基因可能的杂合变异的检测方面所具有的灵敏度与特异性是令人满意的。芯片技术中杂交测序技(sequencing by hybridization,SBH)是一种新的高效快速测序方法,也是基因

14、芯片的另一重要应用,其原理与芯片检测多态位点相类似,即通过与一组已知序列的核酸探针杂交进行序列测定,用荧光标记的待测序列与基因芯片上对应位置的核酸探针产生互补配对时,通过确定荧光强度最强的探针位置,获得一组序列互补的探针序列,据此可重组出靶核酸的序列。用含65536个8聚寡核苷酸的微阵列,采用SBH技术,可测定200bp长DNA序列,采用67108864个13聚寡核苷酸的微阵列,可对数千个碱基长的DNA测序。1、基因破译 目前,由多国科学家参与的“人类基因组计划”,正力图在21世纪初绘制出完整的人类染色体排列图。众所周知,染色体是DNA的载体,基因是DNA上有遗传效应的片段,构成DNA的基本单

15、位是四种碱基。由于每个人拥有30亿对碱基,破译所有DNA的碱基排列顺序无疑是一项巨型工程。与传统基因序列测定技术相比,基因芯片破译人类基因组和检测基因突变的速度要快数千倍。 基因芯片的检测速度之所以这么快,主要是因为基因芯片上有成千上万个微凝胶,可进行并行检测;同时,由于微凝胶是三维立体的,它相当于提供了一个三维检测平台,能固定住蛋白质和DNA并进行分析。 美国正在对基因芯片进行研究,已开发出能快速解读基因密码的“基因芯片”,使解读人类基因的速度比目前高1000倍。图1所示为一种内嵌基因芯片的基因检测装置。2、基因诊断 通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是

16、遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50以上。 未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进步到依据个人遗传基因而异的“定制医疗”的时代。3、基因环保 基因芯片在环保方面也大有可为。基因芯片可高效地探测到由微生物或有机物引起的污染,还能

17、帮助研究人员找到并合成具有解毒和消化污染物功能的天然酶基因。这种对环境友好的基因一旦被发现,研究人员将把它们转入普通的细菌中,然后用这种转基因细菌清理被污染的河流或土壤。4、基因计算 DNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将螺旋状的DNA的分子拉直,其长度将超过人的身高,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,DNA分子被视为超高密度、大容量的分子存储器。 基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头英特尔公司、软件巨头微软公司相匹敌的生物

18、信息企业。四、基因芯片的实际应用 基因芯片在生命科学、医药研究、环境保护和农业等领域有极其重要的应用价值。在基因芯片的驱动下,人类正进入一个崭新的生物信息时代。1、在美国科学家第一次将一个他们称之为生物芯片的计算机芯片植入人体的细胞上,从而使人体细胞与计算机连接。这是美国科学家波利斯·鲁宾斯基(Boris Lubinsky)和他的同事黄永(译音)在3月份的美国生物医学微设备杂志中著文披露的。 2、人体细胞外面包有一个细胞膜,该细胞膜具有使特定物质单向通过的功能。多年来,科学家们一直寻求找到用电冲击的方法,使所希望的物质进入细胞膜,但直 到目前为止,所用的方法有时成功,有时失败。而使用

19、鲁宾斯基和黄永研究出来的 新方法,细胞膜由计算机得到一个信号,让某些物质进入到细胞中。随具体场合的 不同,这些物质可以是例如用来改变基因的遗传物质,也可以是药物或蛋白质。这样,就可以更好地使这些物质发生效力。 鲁宾斯基等科学家打算研制出能对例如神经细胞和肌肉等人体组织发出指令的生物芯片,这样至少会使人所服用的药物发挥更大的效力。俄亥俄州立大学生物医学工程中心主任莫里罗·弗拉里称鲁宾斯基的这项发明是处在发展阶段早期的具有潜在作用的实验室工具。美国科学家们称,他们已经找到了一种能使人体细胞和电路进行交配的生物工程芯片,它能在医学和基因工程学方面发挥关键的作用。 这种比头发还小还细的微型装

20、置使健康人体细胞和电子芯片结合,通过电脑对芯片进行控制,科学家认为他们能够控制细胞的活动。 电脑向细胞芯片发送电脉冲,激发细胞膜孔张开,并激活细胞。科学家希望能够大批量地生产这种细胞芯片,并能够把它们植入人体,取代或修正病变组织。 领导这项研究的加州大学机械工程学教授鲍里斯·鲁宾斯基说:“细胞芯片还使科学家在复杂的基因治疗过程中更准确地进行控制,因为他们能够更准确地开启细胞孔。” 鲁宾斯基还说:“我们在生物学领域里引入了工程学的精髓,我们完全可以在不影响周围其它细胞的情况下输入DNA、提取蛋白质以及注射药物。” 该细胞芯片的出现与长期存在的一种理论有关,即一定量的电压能够穿透细胞膜。

21、 多年来,科学家一直在进行用电力轰击细胞试验的遗传研究,希望藉此引入新的疗法和基因物质。研究人员希望能最终制造出与激活不同的身体组织(从肌肉到骨骼到大脑)所需的准确的电压量相调合的细胞芯片。那样的话,将会有数以千计的细胞芯片用来治疗各种类型的疾病。 3、用独创技术自行研制的中国第一片应用型基因芯片于近日在第一军医大学正式诞生。 据第一军医大学有关负责人透露,该军医大研制成功的基因芯片,是中国首次应用一种创新的基因片扩增技术,率先攻克了内地同行在基因芯片研究中首先面临的快速经济地搜集数以万数基因探针难题,并巧妙运用新技术手段明显地降低成本。 目前,该芯片已完成实验室工作,即将进入临床验证阶段,如

22、果顺利,用於临床诊断的基因芯片可望不久投入批量生产。但到目前为止,全世界还没有实际用於临床应用诊断的基因芯片生产。 在实验室里,将这几片比大拇指盖稍大的基因芯片,放在检测器上,与之相连的电脑屏幕上立刻出现了纵横交错的红红绿绿荧光点,出现的每个荧光点就是一个基因片断的点阵。只要取病人一滴血放在芯片检测卡上,经过分子杂交后,连上电脑就可以立刻显示出基因变化情况,并通过电脑把基因语言翻译成医生能读得懂的信息,从而对疾病做出准确的诊断。 这种芯片的成功诞生,标志着疾病的诊断由细胞和组织水平推进到基因水平。它们的开发应用将在环境污染控制、动植物检疫、器官移植、产前诊断、药物筛选、药物开发等方面展示出广阔

23、的前景。五、生命科学渐成IT公司关注焦点 人类基因组工作草图绘毕的消息像打开了阿里巴巴宝藏的大门,以基因技术为核心的生命科学市场正吸引着越来越多的淘金者。近来,为这些淘金者生产“铁锨”的资讯科技(IT)公司的积极行动颇为引人注目。1、揭开基因之迷须破译大量数据 人类基因组草图仅仅是读出了“生命之书”,而要真正读懂它,揭示所有基因编码所代表的信息,还必须破译浩如烟海的数据。 在著名的英国桑格中心里,有关人类基因组的数据已经达到22万亿字节,是世界上首屈一指的美国国会图书馆藏书内容的两倍多。据这家中心估计,在未来两至三年内,与人类基因组有关的数据量还将上升到50万亿至100万亿字节。2、生命科学公

24、司10%投资用于开发资讯科技 为了解决处理数据所需的庞大计算能力的问题,世界上最大的12家生命科学公司目前把近10%的科研预算用于资讯科技投资,而且这个比例可能还将增长。 据美国国际商业机器公司(IBM)估计,与生命科学有关的资讯科技市场将在今年达到35亿美元,到2003年达到90亿美元。3、市场潜力巨大 一些著名的IT企业,已将眼光瞄准了这一潜力巨大的市场。例如,IBM已经决定投资1亿美元,用五年时间研制一种名为“蓝基因”的超级电脑。“蓝基因”的运算能力将是美国现有40台最快的超级电脑运算能力总和的40倍,它主要用于模拟人类蛋白折叠成特殊形状的过程。世界最大的个人电脑制造商美国康柏公司,也垂

25、涎这块“肥肉”。4、康柏趁早下手培养未来客户基础 已经成为生命科学领域电脑服务器主要供应商的康柏公司最近宣布,它将继续投资1亿美元,支持新兴生物技术公司,以培养未来的客户基础。 其实,IT公司还远不止盯着这些近期利益。以基因研究为基础的生物经济可能在新世纪里成为新经济的重要组成部分,对此人们已经达成共识。5、行业标准制定者能享有巨大经济利益 根据以往的经验,率先进入市场的公司大多能够成为行业标准的制定者,这些行业标准往往意味着巨大的经济利益。 今年8月,德国狮生命科学公司的股票上市。由于投资者看中这家公司的基因次序检索系统(SRS)可能成为行业新标准,其股票价格在短短时间里迅速上涨了50%。6

26、、政府支持基因研究 IT公司进军生命科学领域,与各国政府对基因研究的支持密不可分。为了在基因组研究的下一个阶段分析蛋白质结构的国际竞争中领先,不少国家积极采取措施,促进信息业与生物产业的结合。 例如,日本不久前就组织了“官产学”大联合的“生物产业信息化研究共同体”,参加这个共同体除了制药、食品、生物、化学等与基因科学相关的企业外,还有不少电脑公司。 小结:科学界公认,生物芯片技术将给下个世纪生命科学和医学研究带来一场革命。目前我国科学家正在加速研制这种可能快捷便利提取DNA,查找遗传基因特性的新技术。相信,这一现代生物与高科技联姻的成果将为二十一世纪的发展作出巨大的贡献!基因芯片技术的出现不过

27、短短几年时间,其发展势头十分迅猛,在生命科学的各个领域得到广泛地应用,但其存在的缺陷也是相当明显的。首先是成本的问题,由于芯片制作的工艺复杂,信号检测也需专门的仪器设备,一般实验室难以承担其高昂的费用,其次在芯片实验技术上还有多个环节尚待提高,如在探针合成方面,如何进一步提高合成效率及芯片的集成程度是研究的焦点。而样品制备的简单化与标准化则芯片应用进一步普及的前提。虽然芯片技术还存在这样或那样的问题,但其在基因表达谱分析、基因诊断、药物筛选及序列分析等诸多领域已呈现出广阔的应用前景,随着研究的不断深入和技术的更加完善基因芯片一定会在生命科学研究领域发挥越来越重要的作用。参考文献1Cheung

28、V G,Morley M,Aguilar F et al.Making and reading microarraysJ.Nature Genetics(Supplement),1999,2115.2张思仲.人类基因组的单核苷酸多态性及其医学应用J.中华医学遗传学杂志,1999,16119.3Marshall A and Hodgson J. DNA chips: An array of possibilitiesJ.Nature Biotechnology,1998,16731 .4Ramsay R. DNA chips: State-of-the-artJ.Nature Biotechno

29、logy,1998,1640.5Lipshutz R, Fodor S ,Gingeras T,et al. High density synthetic oligonucleotide arraysJ.Nature Genetics(Supplement),1999,2120.6Prpndnikov D, Timofeev E, Mirzabekov A.Immobilization of DNA in Polyacrylamide gel for the manufracture of DNA chip and oligonucleotide MicrochipsJ,Anal Bioche

30、m,1998,25934.7McGall GH,Barone AD,Diggelmann M,et al. The efficiency of light directed synthesis of DNA arrays on glass substratesJ.J Am ChemSoc,1997,119(22)5081.8Pease AC, Solas D, Sullivan EJ, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysisJ.Proc Natl Acad Sci USA, 19

31、94,915022.9Fodor S,Read L, Pirrung M et al.Light-directed,spatially addressable parallel chemical synthesisJ.Science,1991,251767.10Beecher,Jody E.,McGall,Glenn H.,et al. Chemically amplified photolithography for the fabrication of high density oligonucleotide assaysJ.Polym Mater Sci Eng,1997,76597.1

32、1Schena,M,Shalon,D,Davis,RW,et al. Qantitative monitoring of gene expression patterns with a complementary DNA microarrayJ.Science,1995, 270467.12Hacia J,Brody L,Chee M, et al.Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-color fluorescence AnalysisJ.

33、Nat Genet,1996, 14441.13Hacia J ,Edgemon K,Sun B et al.Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyesJ.Nucleic Acids Res,1998, 264249.14Hacia J.Resequencing and mutation analysis using oligonucleotides microarrays J.Nature Genetics(Supplement),1999,2142.15Wodicka L,Dong H,Mittmann M,et al.Genome-wide expression monitoring in Saccharomyces cerevisiaeJ.Nature Biotechnology,1997,151359.16Lockhart DJ,Dong H,Byrne MC,et al. Expression monitoring by hybridization to high-density oligonucleotid

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论