第2章 阶段复习课 第2课 推理与证明_第1页
第2章 阶段复习课 第2课 推理与证明_第2页
第2章 阶段复习课 第2课 推理与证明_第3页
第2章 阶段复习课 第2课 推理与证明_第4页
第2章 阶段复习课 第2课 推理与证明_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.第二课推理与证明 核心速填1合情推理:1归纳推理:由部分到整体、由个别到一般的推理2类比推理:由特殊到特殊的推理3合情推理: 归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进展归纳类比,然后提出猜测的推理2演绎推理:1演绎推理是由一般到特殊的推理2三段论是演绎推理的一般形式,包括:大前提的一般原理;小前提所研究的特殊情况;结论根据一般原理,对特殊情况做出的判断3直接证明与间接证明1直接证明的两类根本方法是综合法和分析法:综合法是从条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法;2间接证明一种方法是反证法,它是从结论反面成立出发,推出矛盾的证明方法

2、4数学归纳法:数学归纳法主要用于解决与自然数有关的数学问题证明时,它的两个步骤缺一不可它的第一步归纳奠基nn0时结论成立第二步归纳递推假设nk时,结论成立,推得nk1时结论也成立特别要注意nk到nk1时增加的项数体系构建题型探究合情推理1观察以下等式:1,1,1,据此规律,第n个等式可为_2类比三角形内角平分线定理:设ABC的内角A的平分线交BC于点M,那么.假设在四面体PABC中,二面角BPAC的平分面PAD交BC于点D,你可得到的结论是_,并加以证明. 【导学号:31062174】解析1等式的左边的通项为,前n项和为1;右边的每个式子的第一项为,共有n项,故为.2画出相应图形,如下图由类比

3、推理得所探究结论为.证明如下:由于平面PAD是二面角BPAC的平分面,所以点D到平面BPA与平面CPA的间隔 相等,所以.又因为.由知成立答案112规律方法1.归纳推理的特点及一般步骤2类比推理的特点及一般步骤跟踪训练11观察如图2­1中各正方形图案,每条边上有nn2个点,第n个图案中圆点的总数是Sn.图2­1按此规律,推出Sn与n的关系式为_2设等差数列an的前n项和为Sn,那么S4,S8S4,S12S8,S16S12成等差数列类比以上结论有:设等比数列bn的前n项积为Tn, 那么T4,_,_, 成等比数列解析1依图的构造规律可以看出:S22×44,S33

4、15;44,S44×44正方形四个顶点重复计算一次,应减去猜测:Sn4n4n2,nN*2等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列bn的前n项积为Tn,那么T4, , , 成等比数列答案1Sn4n4n2,nN*2 综合法与分析法假设a、b、c是ABC的三边长,m0,求证:. 【导学号:31062175】思路探究根据在ABC中任意两边之和大于第三边,再利用分析法与综合法结合证明不等式成立证明要证明,只需证明0即可,a0,b0,c0,m0,ambmcm0,abmcmbamcmcambmabcabmacmam2abcabmbcmbm2abcbcmacm

5、cm22abmam2abcbm2cm22abmabcabcm2,ABC中任意两边之和大于第三边,abc0,abcm20,2abmabcabcm20,.母题探究:1. 改变条件本例删掉条件“m0,证明:.证明要证 .只需证ababc>1abc.即证ab>c.而ab>c显然成立所以.2变换条件本例增加条件“三个内角A,B,C成等差数列,求证:.证明要证,即证3,即证1.即证cbcaababbc,即证c2a2acb2.ABC三个内角A,B,C成等差数列B60°.由余弦定理,有b2c2a22cacos 60°,即b2c2a2ac.c2a2acb2成立,命题得证规律

6、方法分析综合法的应用综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.反证法xR,ax2,b2x,cx2x1,试证明a,b,c至少有一个不小于1.证明假设a,b,c均小于1,即a1,b1,c1,那么有abc3,而abc2x22x32233,两者矛盾,所以假设不成立,故a,b,c至少有一个不小于1.规律方法反证法的关注点(1)反证法的思维过程:否认结论推理过程中引出矛盾否认假设肯定结论,即否认推理否认(经过正确的推理导致逻辑矛盾,从而到达新的“否认(即肯定原命题).(2)反证法常用于直接证明困难或以否

7、认形式出现的命题;涉及“都是“都不是“至少“至多等形式的命题时,也常用反证法.跟踪训练2假设x,y,z0,2,求证:x2y,y2z,z2x不可能都大于1. 【导学号:31062176】证明假设x2y>1,且y2z>1,且z2x>1均成立,那么三式相乘有xyz2x2y2z>1,由于0<x<2,所以0<x2x 1,同理0<y2y1,0<z2z1,三式相乘得0<xyz2x2y2z1,与矛盾,故假设不成立所以x2y,y2z,z2x不可能都大于1.数学归纳法设a>0,fx,令a11,an1fan,nN*.1写出a2,a3,a4的值,并猜测

8、数列an的通项公式;2用数学归纳法证明你的结论解1a11,a2fa1f1;a3fa2;a4fa3.猜测annN*2证明:易知,n1时,猜测正确假设nkkN*时猜测正确,即ak,那么ak1fak.这说明,nk1时猜测正确由知,对于任何nN*,都有an.规律方法1.数学归纳法的两点关注(1)关注点一:用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.(2)关注点二:由nk到nk1时,除等式两边变化的项外还要利用nk时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.2.与“归纳猜测证明相关的常用题型的处

9、理策略(1)与函数有关的证明:由条件验证前几个特殊值正确得出猜测,充分利用条件并用数学归纳法证明.(2)与数列有关的证明:利用条件,当直接证明遇阻时,可考虑应用数学归纳法.跟踪训练3用数学归纳法证明不等式>n2,nN*证明当n2时,.假设当nkk2且kN*时不等式成立,即,那么当nk1时, . 这就是说,当nk1时,不等式也成立由可知,原不等式对任意大于1的正整数都成立转化与化归思想的应用,kkZ,且sin cos 2sin ,sin cos sin2.求证: 【导学号:31062177】证明要证成立,即证,即证cos2sin2cos2sin2,即证12sin212sin2,即证4sin

10、22sin21,因为sin cos 2sin ,sin cos sin2 ,所以sin cos 212sin cos 4sin2,所以12sin24sin2 ,即4sin2 2sin21.故原结论正确规律方法转化与化归思想转化与化归的思想方法是数学中最根本的思想方法,数学中的一切问题的解决都离不开转化与化归,转化与化归的原那么是将不熟悉的或难解的问题转化为熟知的、易解或已经解决的问题;将抽象的问题转化为详细的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为直观的特殊问题;将实际应用问题转化为数学问题.本章中无论是推理过程还是用分析法、综合法、反证法、数学归纳法证明问题的过程中都用到了转化与化归思想.跟踪训练4函数fx在R上是增函数,a,bR.1求证:假如ab0,那么fafbfafb;2判断1中的命题的逆命题是否成立?并证明你

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论