指数函数及其性质教学设计_第1页
指数函数及其性质教学设计_第2页
指数函数及其性质教学设计_第3页
指数函数及其性质教学设计_第4页
指数函数及其性质教学设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.1.2指数函数及其性质教学设计一、教学目标:知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。二、教学重点、难点:教学重点:指数函数的概念、图象和性质。指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一。作为常见函数,它既是函数概念及性质的第一次应用

2、,也是今后学习对数函数的基础;同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。三、学情分析:学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主

3、探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。四、教学内容分析本节课是普通高中课程标准实验教科书数学(1)(人教B版)第二章第一节第二课(3.1.2)指数函数及其性质。根据我所任教的学生的实际情况,我将指数函数及其性质划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应

4、重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。五、教学过程:(一)创设情景问题1:某种细胞分裂时,由1个分裂成2个,2个分裂

5、成4个,一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?学生回答: y与 x之间的关系式,可以表示为y2x 。问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。学生回答: y与 x之间的关系式,可以表示为y0.84x 。 (二)导入新课引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y2x、y0.84x

6、分别以0a1的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。(三)新课讲授1指数函数的定义一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。的含义:设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)(1,+)问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况?设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。对于底数的分类,可将问题分解为:(1)若a0且 .在这里要注意生生之间、师生之间的对话。 设

7、计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。1:指出下列函数那些是指数函数:2:若函数是指数函数,则a=-3:已知y=f(x)是指数函数,且f(2)=4,求函数y=f(x)的解析式。设计意图 :加深学生对指数函数定义和呈现形式的理解。2指数函数的图像及性质在同一平面直角坐标系内画出下列指数函数的图象画函数图象的步骤:列表、描点、连线思考如何列表取值?教师与学生共同作出 图像。设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,

8、是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。利用几何画板演示函数的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:教师组织学生结合图像讨论指数函数的性质。设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的

9、运用。师生共同总结指数函数的性质,教师边总结边板书。特别地,函数值的分布情况如下:设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。(四)巩固与练习例1: 比较下列各题中两值的大小教师引导学生观察这些指数值的特征,思考比较大小的方法。(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。(5)题底不同,指数相同,可以利用函数的图像比较大小。(6)题底不同,指数也不同,可以借助中介值比较大小。例2:已知下列不等式 , 比较m,n的大小 : 设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。(五)课堂小结通过本节课的学习,你学到了哪些知识?你又掌握了哪些数学思想方法?你能将指数函数的学习与实际生活联系起来吗?设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。(六)布置作业1、练习B组第2题;习题3-1A组第3题思考题2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,第三天给A先生4元,第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论