




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、递推数列分类类型1:渗透三角函数周期性数列与三角函数的结合是一类创新试题,利用三角函数的周期性体现数列的变化,利用三角不等式进行放缩是证明数列不等式的常见方法。例1(2008年湖南卷,18,满分12分)数列an满足a1=1,a2=2,求a3,a4,并求数列an的通项公式;本题分为两种情况,采取非常规的递推数列求通项的方法,利用三角函数的诱导公式寻找递推关系,体现三角函数的周期性,进而求出该数列的通项为一分段数列。例2(2009年江西,文,21,满分12分)数列an的通项,其前n项和为(1)求sn;(2)令,求数列bn的前n项和Tn例3(2009年江西,理8,5分)数列an的通项,其前n项和为s
2、n,则sn为( )A470B490C495D510类型2:an+1=an+f(n)解法思路:把原递推公式转化为an+1-an=f(n),利用累加法(逐差相加法)求解例4(2008,江西,理5)在数列an中,a1=2,an+1=an+ln,则an=A2+lnnB2+(n-1) lnnC2+nlnnD1+n+lnn例5(2009,全国I,理22)在数列an中,a1=1,an+1=(1)设,求数列an的通项公式;(2)求数列an的前n项和。 类型3:an+1=f(n)an解法思路:把原递推公式转化为,利用累乘法(逐商相乘法)求解例6(2004,全国I,理15)已知数列an,满足a1=1,an=a1+
3、2a2+3a3+(n1)an1(n2),则an的通项an=_解:由已知,得an+1=a1+2a2+3a3+(n1)an1+nan,用此式减去已知式,得当n2时,an+1an=nan,即an+1=(n+1)an,又a2=a1类型4:an+1=pan+q(其中p、q均为常数,且pq(p1)0)解法思路:待定系数法,把原递推公式转化为an+1t=p(ant),其中,再利用换元法转化为等比数列求解,或转化为二队循环数列来解(见后文),或直接用逐项迭代法求解。例7(2008年,安徽,文21)设数列an满足a1 =a,an +1=c an +1c,nN*,其中a、c为实数,且c0求数列an的通项公式;解:
4、方法一:因为an+11=c(an1)所以当a1时,an1是首项为a1,公比为c的等比数列所以an1=( an1)cn1即an=( an1)cn1+1当n=1时,an=1仍满足上式数列an的通项公式为an=( a1)cn1+1 (nN*)方法二:由题设得:n2时, an1=c( an11)=c2 (an21)= cn1(an1)= (a1)c n1所以an=( a1)=c n1+1n=1时,a1=a也满足上式所以an的通项公式为an=( a1)cn1+1 (nN*)类型4的变式:an+1=pan+f(n)解法思路:通过构造新数列bn,消去f(n)带来的差异,例如下面的类型5 :an+1=pan+
5、qn(其中p、q均为常数,pq(p1)(q1)0)(或an+1=pan+rqn,其中p、q、r均为常数)解法思路:一般地,要先在原递推公式两边同除以qn+1,得,引入辅助数列bn(其中),得即可转化为类型3。或直接将原递推式变形为),(其中),则直接转化为等比数列例8(2006,全国I22,12分)设数列an的前n项的和求首项a1与通项an。例9(2009,全国II,理19)设数列an的前n项的和(1)设,证明数列bn是等比数列;(2)求数列an的通项公式。类型6:(其中p,q均为常熟)。解法一(待定系数法):先把原递推公式转化为,其中s, t满足解法二(特征根法):对于由递推公式,=,=给出
6、的数列an,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列an的通项为,其中A、B由=,=决定(即把和n=1,2,代入,得到关于A、B的方程组);当时,数列的通项为,其中A、B由=,=决定(即把和n=1,2,代入,得到关于A、B的方程组)。例10(2006,福建,文22)已知数列an满足=1,=3,()。(1)证明:数列是等比数列;(2)求数列an的通项公式;(3)若数列bn满足(),证明bn是等差数列。解:(1),=1,=3,(),是以=2为首项,2为公比的等比数列。(2)(),an =+ + + += + +2+1=-1()类型7 递推公式为Sn与的关系式(或Sn)解法思路:这
7、种类型一般利用=或=消去进行求解。例11.(2009,湖北19)已知数列an的前项和Sn= -+2(为正整数),令=,求证数列bn是等差数列,并求数列an的通项公式解:在Sn= +2中,令n=1,可得S1 = -+1=,当时,Sn-1= +2,=SnSn-1=+2=+,即=+1又=,=+1,即当时,-=1又=2=1数列bn是首项和公差均为1的等差数列,于是=n=,=.例12 (2008,全国II20)设数列an的前n项和为Sn,已知=,=Sn+(),()设=-,求数列bn的通项公式;()若(),求的取值范围。解()依题意-=+,即=2+,由此得-=2(-),因此,所求通项公式为=-=(-3),
8、()。()由()知=+(-3),(),于是当时,=-=+(a-3)-(a-3)=2×+(a-3) =4×+(a-3) =,当时,09。又=+3综上,所求的的取值范围是。类型8 an+1=pan+an+b(p1,a0)解法思路:这种类型一般利用待定系数法构造等比数列, 即令,与已知递推式比较,解出,从而转化为是公比p为的等比数列。例13.(2006山东,文,22)已知数列an中,=,点在直线上,其中()令,求证数列bn是等比数列;()求数列an的通项。所以bn是以为首项,以为公比的等比数列类型9 (p0, 0)解法思路:这种类型一般是等式两边取对数后转化为,再利用待定系数法求
9、解。例14(2005,江西,理,21)已知数列an的各项都是正数,且满足:求数列的an通项公式例15(2006,山东22)已知,点在函数的图像上,其中证明数列是等比数列类型10 解法思路:这种类型一般是等式两边取倒数后换元转化为。例17(2006,江西,理,22,本大题满分14分)已知数列满足: 求数列的通项公式;解:将条件变为:为一个等比例数,其首项为从而据此得类型11 解法思路:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且phqr,r0, ),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征议程有两价目相异的根x1、x2时,则是等比数列。例19(2009年,江西,理,22)各项均为正数的数列,且对满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CBTMA 0003-2020安徽科技大市场建设运营规范
- T/CAQI 144-2020中小学校教室照明改造工程技术规范
- T/CAQI 142-2020空气用化学过滤器
- T/CAPE 10102-2022混凝土拌合物性能试验仪器设备管理规程
- T/CAMIR 001-2021市场调查机构资质等级规范
- 汉阳美术面试题及答案
- 家具营销考试题及答案
- 核酸插队面试题及答案
- 慈善公益面试题及答案
- 儿童文学考试题及答案
- 建筑集团公司商务管理手册(投标、合同、采购)分册
- 苏教版二年级下册《磁铁的磁力》课件
- 幼儿园课件小小银行家
- 美的空调制造工艺手册
- 会议实务之收集与会人员对会议的意见和建议
- 大班社会教案看不见的世界教案及教学反思
- 《企业经营盈利能力分析-以蓝帆医疗为例(论文)》8700字
- 国际货运代理的责任与责任风险防范
- 机械制造技术基础课程设计讲课用
- 胎盘早剥应急预案演练脚本
- 保障性租赁住房申请表
评论
0/150
提交评论