led照明的参数MicrosoftWord文档3_第1页
led照明的参数MicrosoftWord文档3_第2页
led照明的参数MicrosoftWord文档3_第3页
led照明的参数MicrosoftWord文档3_第4页
led照明的参数MicrosoftWord文档3_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、LED光衰LED光衰是指LED经过一段时间的点亮后,其光强会比原来的光强要低,而低了的部分就是LED的光衰. 一般LED封装厂家做测试是在实验室的条件下(25的常温下),以20MA的直流电连续点亮LED1000小时来对比其点亮前后的光强. 光衰计算方法N小时的光衰=1-(N小时的光通量/0小时的光通量) 光衰影响因素泡壳越大、光衰越小,即与钨的蒸发量沉积挡住光输出成正比。而充气灯泡由于部分地阻止钨丝蒸发所以光衰要小。 如果是白炽灯用相同灯丝,做在不同大小泡壳里,相对来说同一时间点的光衰的确大泡壳的比小泡壳的小。另外,同样是充气泡大玻壳的灯泡内部空间大,气体对流到玻壳有比较大散热面积,相对小玻壳

2、灯的温度低很多,则灯丝的温度也相对低,发光效率低,钨丝的蒸发率也低,所以光衰要小。但同样的灯丝在大玻壳的光效比小玻壳的灯丝低很多。所以在灯丝设计的时候是分开设计的,在现实生产中的可比意义不大光通量科技名词定义中文名称:光通量 英文名称:luminous flux 定义:发光强度为1的光源在立体角元内发出的光。 应用学科:机械工程(一级学科);光学仪器(二级学科);光学仪器一般名词(三级学科) 本内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片   光通量测试仪光通量(luminous flux)指人眼所能感觉到的辐射功率,它等于单位时间内某一波段的辐射能量和该波段

3、的相对视见率的乘积。由于人眼对不同波长光的相对视见率不同,所以不同波长光的辐射功率相等时,其光通量并不相等。目录物理名词 物理单位 人体应用编辑本段物理名词例如,当波长为555×10-9米的绿光与波长为650×10-9米的红光辐射功率相等时,前者的光通量为后者的10倍。 编辑本段物理单位光通量的单位为“流明”。光通量通常用来表示,在理论上其功率可用瓦特来度量,但因视觉对此尚与光色有关。所以度量单位采用,依标准光源及正常视力另定之“流明”来度量光通量。符号:lm 1.光通量是每单位时间到达、离开或通过曲面的光能数量。 2.光通量是灯泡发出亮光的比率。 流明 (lm) 是国际单

4、位体系 (SI) 和美国单位体系 (AS) 的光通量单位。如果您想将光作为穿越空间的粒子(光子),那么到达曲面的光束的光通量与 1 秒钟时间间隔内撞击曲面的粒子数成一定比例。 光通量的物理表达式为:    式中: K:光敏度、感光度(类比:胶卷的感光度)、人眼对于彩色的感知能力 K = 683.002 lm/W。 K值使光通量的单位与辐射功率的单位得到统一。 :波长,事实上人眼只对波长位于380nm780nm的光有反应,习惯上我们把低于380nm的光波称为紫外线(Ultraviolet,简称UV), 把高于780nm的光波称为红外线(Infrared,简称IR),这一点也反

5、映在了视见函数V()中。 V():称为人眼相对光谱敏感度曲线,亦作视见函数曲线,是总结了众多针对人眼的测试经验而得到的,它描述了人眼对不同波长的光的反应强弱。 编辑本段人体应用光源的辐射能通量;对人眼所引起视觉的物理量。即单位时间内某一波段内的辐射能量与该波段的相对视见率的乘积。人眼对不同波段的光,视见率不同;故不同波段的光辐射功率相等,而光通量不等。 = 人眼对亮度的敏感程度与颜色有关,在整个可见光范围内并不是均匀的.可以用相对敏感函数曲线进行描述. 人眼对于波长X=555nm的光线最为敏感,我们定义这时的相对视敏度Vs(555)=1.当X为其它值时,Vs(X)均小于1.如果对于某一波长X的

6、单色光,其辐射功率为P(X),相对视敏函数为Vs(X),则可以定义光通量为Y(X)=P(X)*Vs(X) 当P(X)以瓦为单位时,Y(X)的单位为光瓦.只有当X=555nm时,1瓦光辐射功率产生1 lm(流明)的光通量显色指数求助编辑百科名片光源对物体的显色能力称为显色性,是通过与同色温的参考或基准光源(白炽灯或画光)下物体外观颜色的比较。光所发射的光谱内容决定光源的光色,但同样光色可由许多,少数甚至仅仅两个单色的光波纵使而成,对各个颜色的显色性亦大不相同。相同光色的光源会有相异的光谱组成,光谱组成较广的光源较有可能提供较佳的显色品质。 当光源光谱中很少或缺乏物体在基准光源下所反射的主波时,会

7、使颜色产生明显的色差(color shift)。色差程度愈大,光源对该色的显色性愈差。演色指数系数(Kaufman)仍为目前定义光源显色性评价的普遍方法。目录显色分两种 1. 忠实显色 2. 效果显色显色指数与显色性的关系显色分两种 1. 忠实显色 2. 效果显色显色指数与显色性的关系展开编辑本段显色分两种忠实显色能正确表现物质本来的颜色需使用显色指数(Ra)高的光源,其数值接近100,显色性最好。 效果显色要鲜明地强调特定色彩,表现美的生活可以利用加色的方法来加强显色效果。采用低色温光源照射,能使红色更加鲜艳;采用中等色温光源照射,使蓝色具有清凉感;采用高色温光源照射,使物体有冷的感觉。 编

8、辑本段显色指数与显色性的关系当光源光谱中很少或缺乏物体在基准光源下所反射的主波时,会使颜色产生明显的color shift.色差程度越大,光源对该色的显色性越差。演色指数系数(Kau fman)仍为目前定义光源显色性评价的普遍方法。 白炽灯的显色指数定义为100,视为理想的基准光源。此系统以8种彩度中等的标准色样来检验,比较在测试光源下与在同色温的基准下此8色的偏离(Deviation)程度,以测量该光源的显色指数,取平均偏差值Ra20-100,以100为最高,平均色差越大,Ra值越低。低于20的光源通常不适于一般用途。 指数(Ra) 等级 显色性 一般应用 90-100 1A 优良 需要色彩

9、精确对比的场所 80-89 1B 需要色彩正确判断的场所 60-79 2 普通 需要中等显色性的场所 40-59 3 对显色性的要求较低,色差较小的场所 20-39 4 较差 对显色性无具体要求的场所 白炽灯的理论显色指数为100,但实际生活中的白炽灯种类繁多,应用也不同,所以其Ra值不是完全一致的。只能说是接近100,是显色性最好的灯具。具体灯具的Ra值可见下表所举。 光源 显色指数Ra 白炽灯 97 日光色荧光灯 80-94 白色荧光灯 75-85 暖白色荧光灯 80-90 卤钨灯 95-99 高压汞灯 22-51 高压钠灯 20-30 金属卤化物灯 60-65 钠铊铟灯 60-65 镝灯

10、 85以上功率因数科技名词定义中文名称:功率因数 英文名称:power factor 定义:有功功率与视在功率之比。 应用学科:电力(一级学科);通论(二级学科) 本内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片   单相功率因数变送器在交流电路中,电压与电流之间的相位差()的余弦叫做功率因数,用符号cos表示,在数值上,功率因数是有功功率和视在功率的比值,即cos=P/S目录说明 要求 1. (1) 最基本分析 2. (2) 基本分析 3. (3) 高级分析对于功率因数改善 三者关系 好处 改善电能质量的理由说明 要求 1. (1) 最基本分析 2. (2)

11、基本分析 3. (3) 高级分析对于功率因数改善 三者关系 好处 改善电能质量的理由展开编辑本段说明    一种功率因数变送器功率因数的大小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大, 从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 编辑本段要求(1) 最基本分析拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位

12、的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。(使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析每种电机系统均消耗两大功率,分别是真正的有用功(叫kw)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级

13、分析在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。 编辑本段对于功率因数改善电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。 无功补偿的主要目的就是提升补偿

14、系统的功率因数。因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯,几乎所有的无效功都是电感性,电容性的非常少见,例如:变频器就是容性的,在变频器电源端加入电抗器可提高功率因数。 编辑本段三者关系也就是因为这个电感性的存在,造成了系统里的一个KVAR值,三者之间是一个三角函数的关系: K_va2=K_w2+K_var2    一种有源功率因数校正电路简单来讲,在上面的公式中,如果今天的KVAR

15、的值为零的话,KVA就会与KW相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本效益最高,所以功率因数是供电局非常在意的一个系数。用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.91之间,低于0.9时需要接受处罚。 编辑本段好处供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢? 通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。 藉由良好功因

16、值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。 可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。 举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时: 补偿前:1000×0.8=800KW 补偿后:1000×0.98=980KW 同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。 减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。 此外,有些电力电子设备如整流器、变频器、开关电

17、源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。 并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。 谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。 谐波污染也会增加电缆等输电线路的

18、损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。 因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。 编辑本段改善电能质量的理由为什么说提高用户的功率因数可以改善电压质量? 电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。当线路输送一定数量的有功功率时,如输送的无功功率越多,线路的电压损失越大。即送至用户端的电压就越低。如果110KV以下的线路,其电压损失可近似为:U=(PR+QX)/Ue 其中:U线路的电压损失,KV U

19、e线路的额定电压,KV P线路输送的有功功率,KW Q线路输送的无功功率,KVAR R线路电阻,欧姆 X线路电抗,欧姆 由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。 在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COS表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。IP防护等级求助编辑百科名片IP(INGRESS PROTECTION)防护等级系统是由IEC(INT

20、ERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。将电器依其防尘防湿气之特性加以分级。这里所指的外物含工具,人的手指等均不可接触到电器内之带电部分,以免触电。IP防护等级是由两个数字所组成,第1个数字表示灯具离尘、防止外物侵入的等级,第2个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高。目录表一: 表二: 1. 第二个标示特性号码(数字)所指的防护程度 2. 附加字母:防止接近危险部件 3. 补充字母:专门补充的信息- 防水试验 1. 1、范围 2. 2、各种等级的防水试验内容 3. 文字 4. IEC IP防护等级定义表一: 表二: 1

21、. 第二个标示特性号码(数字)所指的防护程度 2. 附加字母:防止接近危险部件 3. 补充字母:专门补充的信息- 防水试验 1. 1、范围 2. 2、各种等级的防水试验内容 3. 文字 4. IEC IP防护等级定义展开两个标示数字所表示的防护等级如表一及表二所示: 编辑本段表一: 数字防护范围说明0无防护对外界的人或物无特殊的防护1防止直径大于50mm的固体外物侵入防止人体(如手掌)因意外而接触到电器内部的零件,防止较大尺寸(直径大于50mm)的外物侵入2防止直径大于12mm的固体外物侵入防止人的手指接触到电器内部的零件,防止中等尺寸(直径大于12.5mm)的外物侵入3防止大于直径2.5mm

22、的固体外物侵入防止直径或厚度大于2.5mm的工具、电线及类似的小型外物侵入而接触到电器内部的零件4防止大于直径1.0mm的固体外物侵入防止直径或厚度大于1.0mm的工具、电线及类似的小型外物侵入而接触到电器内部的零件5防止外物及灰尘完全防止外物侵入,虽不能完全防止灰尘侵入,但灰尘的侵入量不会影响电器的正常运作6防止外物及灰尘完全防止外物及灰尘侵入编辑本段表二:第二个标示特性号码(数字)所指的防护程度 数字防护范围说明0无防护对水或湿气无特殊的防护1防止水滴侵入垂直落下的水滴(如凝结水)不会对电器造成损坏2倾斜15度时,仍可防止水滴侵入当电器由垂直倾斜至15度时,滴水不会对电器造成损坏3防止喷洒

23、的水侵入防雨或防止与垂直的夹角小于60度的方向所喷洒的水侵入电器而造成损坏4防止飞溅的水侵入防止各个方向飞溅而来的水侵入电器而造成损坏5防止喷射的水侵入防止来自各个方向飞由喷嘴射出的水侵入电器而造成损坏6防止大浪侵入装设于甲板上的电器,可防止因大浪的侵袭而造成的损坏7防止浸水时水的侵入电器浸在水中一定时间或水压在一定的标准以下,可确保不因浸水而造成损坏8防止沉没时水的侵入电器无限期沉没在指定的水压下,可确保不因浸水而造成损坏附加字母:防止接近危险部件A 手背 B 手指 C 工具 D 金属线 补充字母:专门补充的信息H 高压设备 M 做防水试验时试样运行 S 做防水试验时试样静止 W 气候条件

24、编辑本段- 防水试验1、范围防水试验包括第二位特征数字为1至8,即防护等级代码为IPX1至IPX8。 2、各种等级的防水试验内容(1)IPX1 方法名称:垂直滴水试验 试验设备:滴水试验装置及其试验方法见2.11 试样放置:按试样正常工作位置摆放在以1r/min的旋转样品台上,样品顶部至滴水口的距离不大于200mm 试验条件:滴水量为10.5 mm/min; 试验持续时间:10 min; (2)IPX2 方法名称:倾斜 15°滴水试验 试验设备:滴水试验装置及其试验方法见2.11 试样放置:使试样的一个面与垂线成15°角,样品顶部至滴水口的距离不大于200mm。每试完一个面

25、后,换另一个 面,共四次。 试验条件: 滴水量为3 0.5 mm/min; 试验持续时间: 4×2.5 min(共10 min); (3)IPX3 方法名称:淋水试验 试验方法: a.摆管式淋水试验 试验设备:摆管式淋水溅水试验装置(装置图形及其试验方法见本书2.14) 试样放置:选择适当半径的摆管,使样品台面高度处于摆管直径位置上,将试样放在样台上,使其顶部到样品喷水口的距离不大于200mm,样品台不旋转。 试验条件:水流量按摆管的喷水孔数计算,每孔为 0.07 L/min。 淋水时,摆管中点两边各60°弧段内的喷水孔的喷水喷向样品。被试样品放在摆管半圆中心。摆管沿垂线两

26、边各摆动60°,共120°。每次摆动(2×120°约4s 。 试验时间:连续淋水10 min 。 b.喷头式淋水试验 试验设备:手持式淋水溅水试验装置,装置图形及其试验方法见本书2.14 试样放置:使试验顶部到手持喷头喷水口的平行距离在300mm至500mm之间 试验条件:试验时应安装带平衡重物的挡板,水流量为10 L/min 试验时间:按被检样品外壳表面积计算,每平方米为1 min (不包括安装面积),最少5 min 。 (4)IPX4 方法名称:溅水试验; 试验方法: a.摆管式溅水试验 试验设备和试样放置:与上述第(3)条 IPX3 之a 款均相同

27、; 试验条件: 除下述条件外,与上述第(3)条 IPX3 之a 款均相同; 喷水面积为摆管中点两边各90°弧段内喷水孔的喷水喷向样品。被试样品放在摆管半圆中心。摆管沿垂两边各摆动180°,共约360°。每次摆动 (2×360°) 约12s 。 试验时间: 与上述第(3) 条 IP 文字IP(INTERNATIONAL PROTECTION)防护等级和防水试验所依据的标准有: 1)由IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草国际防护和防水试验标准:国际电工委员会标准IEC 529 598 2

28、)国标GB 700 86 3)GB 4208等。 IP防护等级实验室:目前能进行IP等级试验的实验室主要有环境可靠性与电磁兼容试验中心,航天环境可靠性试验与检测中心、苏州电器科学研究所院、国家电器产品质量监督检验中心等。 IEC IP防护等级定义IP 表示Ingress Protection(进入防护).IEC IP防护等级是电气设备安全防护的重要. IP等防护级系统提供了一个以电器设备和包装的防尘、防水和防碰撞程度来对产品进行分类的方法,这套系统得到了多数欧洲国家的认可,国际电工协会IEC(International Electro Technical Commission)起草,并在IED

29、529(BS EN 60529:1992)外包装防护等级(IP code)中宣布。 防护等级多以IP后跟随两个数字来表述,数字用来明确防护的等级。 第一个数字表明设备抗微尘的范围,或者是人们在密封环境中免受危害的程度。I代表防止固体异物进入的等级,最高级别是6; 第二个数字表明设备防水的程度。 P代表防止进水的等级,最高级别是8。 如电机的防护等级IP65,防护等级IP55等等. 接触电气设备保护和外来物保护等级(第一个数字) 电气设备防水保护等级( 第二个数字) 第一个数字 防护范围 第二个数字 防护范围 0 无防护 - 0 无防护 - 1 防护50mm直径和更大的固体外来体探测器,球体直径

30、为50mm,不应完全进入 1 水滴防护 垂直落下的水滴不应引起损害 2 防护12.5mm直径和更大的固体外来体探测器,球体直径为12.5mm,不应完全进入 2 柜体倾斜15度时,防护水滴 柜体向任何一侧倾斜15度角时,垂直落下的水滴不应引起损害 3 防护2.5mm直径和更大的固体外来体探测器,球体直径为2.5mm,不应完全进入 3 防护溅出的水 以60度角从垂直线两侧溅出的水不应引起损害 4 防护1.0mm直径和更大的固体外来体探测器,球体直径为1.0mm,不应完全进入 4 防护喷水 从每个方向对准柜体的喷水都不应引起损害 5 防护灰尘 不可能完全阻止灰尘进入,但灰尘进入的数量不会对设备造成伤

31、害 5 防护射水 从每个方向对准柜体的射水都不应引起损害 6 灰尘封闭 柜体内在20毫巴的低压时不应进入灰尘 6 防护强射水 从每个方向对准柜体的强射水都不应引起损害 注:探测器的直径不应穿过柜体的孔 7 防护短时浸水 柜体在标准压力下短时浸入水中时,不应有能引起损害的水量浸入 8 防护长期浸水 可以在特定的条件下浸入水中,不应有能引起损害 认识电子产品的防水等级JIS(IPX) 0 无保护 1 防滴I型 垂直落下的水滴无有害的影响 2 防滴II型 与垂直方向成15“范围内落下的水滴无有害的影响 3 防雨型 与垂直方向成60度范围内降雨无有害的影响 4 防溅型 受任意方向的水飞溅无有害的影响

32、5 防喷射型 任意方向直接受到水的喷射无有害的影响 6 耐水型 任意方向直接受到水的喷射也不会进入内部 7 防浸型 在规定的条件下即使浸在水中也不会进入内部 8 水中型 长时间浸没在一定压力的水中照样能使用 9 防湿型 在相对湿度大90%以上的湿气时照样能使用 国际工业标准防水登记IP和日本工业标准的JIS防水等级是接近的,分0-8的9级,IP等级同样对防尘做了规定。 IPxx 防尘防水等级 防尘等级 (第一个X表示) 0 :没有保护 1 :防止大的固体侵入 2 :防止中等大小的固体侵入 3 :防止小固体进入侵入 4 :防止物体大于 1mm 的固体进入 5 :防止有害的粉尘堆积 6 :完全防止

33、粉尘进入 防水等级 (第二个X表示) 0 :没有保护 1 :水滴滴入到外壳无影响 2 :当外壳倾斜到 15 度时,水滴滴入到外壳无影响 3 :水或雨水从 60 度角落到外壳上无影响 4 :液体由任何方向泼到外壳没有伤害影响 5 :用水冲洗无任何伤害 6 :可用于船舱内的环境 7 :可于短时间内耐浸水( 1m ) 8 :于一定压力下长时间浸水 例:有秤或显示仪表标示为IP65,表示产品可以 完全防止粉尘进入及可用水冲洗无任何伤害。 IPXX等级中关于防水实验的规定。 (1)IPX 1 方法名称:垂直滴水试验 试验设备:滴水试验装置 试样放置:按试样正常工作位置摆放在以 1r/min 的旋转样品台

34、上,样品顶部至滴水口的距离不大于 200mm 试验条件:滴水量为 10.05 mm/min 持续时间:10 min (2)IPX 2 方法名称:倾斜 15°滴水试验 试验设备:滴水试验装置 试样放置:使试样的一个面与垂线成 15°角,样品顶部至滴水口的距离不大于 200mm 。每试验完一个面后,换另一个面,共四次。 试验条件: 滴水量为 30.5 mm/min 持续时间: 4×2.5 min( 共10 min ) (3)IPX 3 方法名称:淋水试验 试验方法: a。 摆管式淋水试验 试验设备:摆管式淋水溅水试验装置 试样放置:选择适当半径的摆管,使样品台面高度处于摆管直径位置上,将试样放在样台上,使其顶部到样品喷水口的距离不大于 200mm ,样品台不旋转。 试验条件:水流量按摆管的喷水孔数计算,每孔为 0.07 L/min ,淋水时,摆管中点两边各 60&#

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论