![解三角形11正弦定理和余弦定理知识点总结_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/d5a2fdff-425f-43b2-8197-5574fd4f7d2f/d5a2fdff-425f-43b2-8197-5574fd4f7d2f1.gif)
![解三角形11正弦定理和余弦定理知识点总结_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/d5a2fdff-425f-43b2-8197-5574fd4f7d2f/d5a2fdff-425f-43b2-8197-5574fd4f7d2f2.gif)
![解三角形11正弦定理和余弦定理知识点总结_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/d5a2fdff-425f-43b2-8197-5574fd4f7d2f/d5a2fdff-425f-43b2-8197-5574fd4f7d2f3.gif)
![解三角形11正弦定理和余弦定理知识点总结_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/1/d5a2fdff-425f-43b2-8197-5574fd4f7d2f/d5a2fdff-425f-43b2-8197-5574fd4f7d2f4.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1直角三角形中各元素间的关系:在ABC中,C90°,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90°;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。二、正弦定理(一)知识与工具:正弦定理:在ABC中, 。(外接圆圆半径)在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180° (2)两边之和
2、大于第三边,两边之差小于第三边(3)面积公式:S=absinC=2R2sinAsinBsinC (其中为三角形内切圆半径),(海伦公式)(4)三角函数的恒等变形。(5) sin(A+B)=sinC,cos(A+B)=-cosC ,sin=cos,cos=sin(10)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。题型3 三角形解的个数的讨论已知a,b和A,求B时的解的情况: 如果sinAsinB,则B有唯一解;如果sinA<sinB<1,则B有两解;如果sinB
3、=1,则B有唯一解;如果sinB>1,则B无解.方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。三、余弦定理(一)知识与工具:a2=b2+c22bccosA cosA= b2=a2+c22accosB cosB=c2=a2+b22abcosC cosC=注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。在变形中,注意三角形中其他条件的应用:(1)三内角和为180°;(2)两边之和大于第三边,两边之差小于第三边。(3)面积公式:S=absinC=2R2sinAsinBsi
4、nC(4)三角函数的恒等变形。(二)题型使用余弦定理解三角形共有三种现象的题型题型1 利用余弦定理公式的原型解三角形题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。题型3 判断三角形的形状结论:根据余弦定理,当a2+b2c2、b2+c2a2、c2+a2b2中有一个关系式成立时,该三角形为钝角三角形,而当a2+b2c2、b2+c2a2,c2+a2b2中有一种关系式成立时,并不能得出该三角形为锐角三角形的结论。判断三角形形状的方法:(1)将已知式所有的边和角转化为边边关系,通过因式分解、配方等得出
5、边的相应关系,从而判断三角形的形状。(2)将已知式所有的边和角转化为内角三角函数间的关系,通过三角恒等变形,得出内角的关系,从而判断出三角形的形状,这时要注意使用A+B+C=这个结论。在两种解法的等式变形中,一般两边不要约去公因式,应移项提取出公因式,以免漏解四、思维总结1解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C = 求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = ,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = 求C
6、,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = ,求角C。2三角形内切圆的半径:,特别地,;3三角学中的射影定理:在ABC 中,4两内角与其正弦值:在ABC 中,5解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。五、判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在中,由余弦定理可知:(注意:)(3) 若,则A=B或.本章浙江高考理科试卷分析:2013年选择一道(定比分点与向量) 填空一道(模的最大值) 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度养老服务业委托贷款协议
- 自愿合伙经营合同书(33篇)
- 2025届柳州市高三语文下学期开学考试卷附答案解析
- 5万吨年锂电池物理法循环再生项目可行性研究报告模板-立项备案
- 2024-2025学年安徽省滁州市定远英华中学高二上学期期中考试历史试卷
- 2025年企业租赁办公地点合同标准格式
- 2025年移动支付行业策划发展联盟合作协议模板
- 2025年化妆专业学员培训协议
- 2025年脚踏自行车及其零件项目提案报告模板
- 2025年制造业转让合同范文
- 电流互感器试验报告
- 蒋中一动态最优化基础
- 华中农业大学全日制专业学位研究生实践单位意见反馈表
- 付款申请英文模板
- 七年级英语阅读理解10篇(附答案解析)
- 抖音来客本地生活服务酒旅商家代运营策划方案
- 钻芯法桩基检测报告
- 无线网网络安全应急预案
- 国籍状况声明书【模板】
- 常用保洁绿化人员劳动合同范本5篇
- 新高考高一英语时文阅读
评论
0/150
提交评论