五年级数学奥数数论问题_第1页
五年级数学奥数数论问题_第2页
五年级数学奥数数论问题_第3页
五年级数学奥数数论问题_第4页
五年级数学奥数数论问题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、算数字(五年级奥数题及答案)(2)算数字a,b,c是19中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍? 算数字有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。求原来的两位数。解答:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。设这个两位数为x。由题意得到(10x+1)-(100+x)=666,10x+1-100-x=666,10x-x=666-1+100,9x=765,x=85。原来的两位数是85。五年级数论问题:数的

2、整除难度:高难度 五年级数论问题:数的整除难度:中难度/高难度用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?解答:被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除,只能是奇数位上数字的和与偶数位上数字的和之差等于0。所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421。所以满足题目

3、要求的数一共有8个。整除问题之整除的性质解析1整除问题之整除的性质解析2整除问题之整除的性质解析3五年级数论问题:中国剩余定理难度:高难度一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数_.解答:采用中国剩余定理:35的公倍数 37的公倍数 57的公倍数15 21 3530 42 7045 63 10560 84 140 除以7余4的 除以5余3 除以3余2分别是:60 63 35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果在最小公倍数之内。所以答案为:158-105=53。五年级数论问题:中国剩余定理难度:中难度一

4、个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:解答:将3、5、7、11这4个数3个3个分别计算公倍数,如表: 3、5、7公倍数中被11除余5的数不太好找,但注意到210除以11余1,所以2105=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678-11552=368是符合条件的最小值.五年级数论问题:中国剩余定理难度:中难度 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数解答:中国剩余定理得23整除问题之整除的性质解析5整除相关解析(五年级奥数)五年级数论

5、问题:质数合数分解质因数难度:中难度一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数? 解答:5位数数字和最大的为95=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。 五年级数论问题:质数合数分解质因数难度:高难度 将4个不同的数字排在一起,可以组成24个不同的四位数(4321=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这

6、24个四位数中最大的一个。解答:不妨设这4个数字分别是abcd那么从小到大的第2个就是dcba,它是5的倍数,因此b=0或5,注意到bcd,所以b=5;从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,cb=5,c=4或2从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4;因为ab,所以a至少是6,那么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。因此d=3,从而a=d+4=3+4=7。这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3所以这24个四位数中最大的一个是7543。 五年级数论问题:质数合数分解质因数难度:高难度 已知=,其中、分别表示不同的数字,那么四位数是多少?解答:因为 ,所以在题述等式的两边同时约去即得 。作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论