版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品资料欢迎下载多元线性回归方程的建立建立多元线性回归方程,实际上是对多元线性模型(2-2-4 )进行估计,寻求估计式(2-2-3 )的过程。与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解 瓦由,也 使全部观测值X 与回归值立的残差平方和达到最小值。由于残差平方和Q -力8 -反尸力必-国+瓦西1 +也如+ %专) i-li-1(2-2-5 )是练瓦 的非负二次式,所以它的最小值一定存在。根据极值原理,当Q取得极值时,"血 应满足t U - "2#)吗由(2-2-5 )式,即满足士-(品+%月=。鲁,一(用十”和十%心十十%”小L 0,兑Y与+4%+%”)悔=。
2、一偈十”和十名玛。十+ %)% =。(2-2-6 )(2-2-6 )式称为正规方程组。它可以化为以下形式注M九丸叫十玄£凶+玄加泡+十(20片.i-1i-1b2-1 > _12B!(»q%十(2工;凶十(1研泡十十(Z/力油工碣乂d iUMi_】QIi-ii 菱呢JI同(»审)%十(£%)* + (£、”建唐十舂=工/乂13i-11-1IJ】(2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。则有(2-2-8 )式中X是多元线性回归模型中数据的结构矩阵,工是结构矩阵X 的转置矩阵。(2-2-7)式右端常数项也可用矩阵 D来表示
3、即M13-1 ,r 11町】1电-1 1演 1D =n乃j-1=如H专?i - k-为*=X7(2-2-9)IB »扣修1% 工呼J4(2-2-10 )因此(2-2-7)式可写成Ab=D或(2-2-11 )如果A满秩(即A的行列式 为)那么A的逆矩阵A1存在,则由(2-10)式和(2-11)式得尸的最小二乘估计为(2-2-12 )也就是多元线性回归方程的回归系数。为了计算方便往往并不先求X盯,再求b,而是通过解线性方程组(2-2-7)来求b。(2-2-7)是一个有p+1个未知量的线性方程组, 它的第一个方程可化为(2-2-13 )式中瓦下一济亏-自舄 力工(2-2-14 )将(2-2
4、-13 )式代入(2-2-7 )式中的其余各方程,得工向十。也十十上03 = %4也1 +上口曲+ £川斗 一乙/产区十上产血+ J也=2-2(2-2-15 )其中.XHK 工因一下探强-3 工勺典)2-12-1i-Li-1电廉也R% =工(。一号)8 -力=一(£。)(£乂>i>1再 mi j-i(2-2-16 )将方程组(2-2-15 )式用矩阵表示,则有Lb=F(2-2-17)其中于是b=L-1F(2-2-18 )因此求解多元线性回归方程的系数可由(2-2-16 )式先求出L,然后将其代回(2-2-17 )式中求解。求b时,可用克莱姆法则求解,也
5、可 通过高斯变换求解。如果把 b直接代入(2-2-18 )式,由于要先求出L 的逆矩阵,因而相对复杂一些。例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(X1)、土壤内溶于&CO溶液并受澳化物水解的有机磷浓度(x 2)以及土壤内溶于&CO溶液但不溶于澳化物的有机磷(x 3)的观察数据。求y对X1, X2, X3的线性回归方程。表2-2-1土壤含磷情况观察数据样本序号土壤中含磷量2加土麋中植物可给瑁 0唱. 0有小10.4521586420.4231636033.1-19377140.6341576154.724595461.765123777
6、9.4444681210.113111793S11.6291739310126581121511110337111761223.146114961323.150134171421.64473泊1523336143341726.8581202181S2995112499计算如下:1 "石= 一£而丁 = 1L944理制检=工72,11 w E1 ".一£/, -123.0001 y = ,乂 =81,278由(2-2-16)式41 = Z(3 一 五乂仙一耳)三 1752 96i-l/三 -石-左)=1035-61 = L2li-
7、l加三工(4一石)6, 一 &) i20U三J1 i-l加工一耳)(21 -石)=1752 96 i-l/三工-初(物-&)=双4 = %U1JL 工H -a)(4-总)=充5723-1工内一4)-2刃如%广±6-动每-两三2216 44 i-l耳尤®玛)5-刀,例3 i-l代入(2-2-15)式得175296叫 +1085.6161+1200 - 323L48(2-2-19 ),10&5 6七1 十 3155.782 + 336 = 2216 44 12叫 +3充明 +35572% = 7593若用克莱姆法则解上述方程组,则其解为(2-2-20 )
8、其中计算得bi=1.7848,8=-0.0834 , ba=0.1611= y -4瑞一与方 一乌网 . 43.67回归方程为P-43.67 + 1 7S48z1 - 0.0S34x. +0 161k,应用克莱姆法则求解线性方程组计算量偏大,下面介绍更实用的方 法一一高斯消去法和消去变换。多项式回归标签:c2009-07-04 14:52 6443 人阅读 评论(0)收藏举报在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。虽然在一些特定的情况下我们可以比较容易地做到这一点 但是在许多实际问题上常常会令我们不知所措。根据高等数学知识我们知道,任何曲线可以近似地用多项式表
9、示,所以在这种情况下我们可以 用多项式进行逼近,即多项式回归分析。一、多项式回归方法假设变量y与x的关系为p次多项式,且在x处对y的随机误差 不(i=1,2,n)服从正态分布N(0产),则y/d +凤+* B刘+104田令Xi1 =Xi , x i2=Xi 2, ,Xip=XiP则上述非线性的多项式模型就转化为多元线性模型,即XT区+用/1 +用/”+%+&(2-4-11J),n)这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。其系数矩阵、结构矩阵、常数项矩阵分别为(2-4-11)(2-4-12)B-XY(2-4-13)回归方程系数的最小二乘估计为(2-4-14)需要
10、说明的是,在多项式回归分析中,检验bj是否显著,实质上就是判 断x的j次项xj对y是否有显著影响。对于多元多项式回归问题,也可以化为多元线性回归问题来解决。 例如, 对于(2-4乂二凤十科乩 +£?舄 + 口 *+ " + £i-15)令 Xi1 =Zl , X i2 =Zj2 , x i3 =Zl 2, X i4 =Zl Zi2 , x i5 =Z2 2则(2-4-15)式转化为居三中用心十自工最十户”汽十十j转化后就可以按照多元线性回归分析的方法解决了。F面我们通过一个实例来进一步说明多项式回归分析方法o一、应用举例例2-4-2某种合金中的主要成分为元素A和B
11、,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。表2-4-3 例2-4-2试验数据序号y137.03.40237.53- 00338.03. 00435.52. 27539.02.10639.5L 83740.0L 53840. E1, 70941.0L801041.5L901142.02. 351242.52. 541343.02. 90首先画出散点图(图2-4-3 )。从散点图可以看出,y与x的关系可 以用一个二次多项式来描述:M-饱+从虫+凤城+ Ji=1,2,3 ,13Xil =Xi ,x i2 =Xi2,M三凤十明
12、。十月马 4国现在我们就可以用本篇第二章介绍的方法求出机 乩 尾 的最小二乘估计。由表2-4-3给出的数据,求出司4。岛- 1603.5, 2.3323由(2-2-16 )式=2(工正一9=45 51-1"=£gi -Ta? = 291325.13i-l工5耳-片)区-3640 i-lAi 几 364Q4 = 2(4-吊)5 -y) = -4,87i-L上勘=g(%曷)8 歹)=一3函*33-1%三七力” 7 2212i-l由此可列出二元线性方程组尸5典十364圾-487,国(%291425,13=一交KW3将这个方程组写成矩阵形式,并通过初等变换求bi,b2和系数矩阵L的
13、逆矩阵L-1:-4.871 Q-38 83 0 1 /-0.639328 179916乂1旷3J45.53M0-3640 291325.13-13,/1250.16598 -0.63933于是bi=-13.3854b 2=0.16598b 0=2.3323+13.3854 :1 40-0.16598 :1603.5=271.599因此? = 271.599 - 13.38MX + 0 16598jtJF面对回归方程作显著性检验:由(2-2-43 )式£4 =3.加0S回二由(2-2-42 )式S 残=Lyy- S 回=0.2572将上述结果代入表2-2-2中制成方差分析表如下:表2-4-4方差分析表丝方和自由度均方显著性回归3. 96402L 982006剩余0. 257210C. 02572口4. 221212查 F检验表,F0o 01 (2, 10) =7.56, F&
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 边缘节点资源管理
- 人教版数学一年级下册期中考试试卷含答案
- 2024-2030年中国有机硅云母板融资商业计划书
- 仓储物流设备智能化
- 2024-2030年中国散热产业运行状况及经营效益预测报告
- 2024-2030年中国教学无线扩充器产业未来发展趋势及投资策略分析报告
- 2024-2030年中国招投标行业发展形势及投资改革创新规划分析报告版
- 2024至2030年中国扑赶片数据监测研究报告
- 2024-2030年中国户内开关箱行业运营状况及发展趋势分析报告
- 2024-2030年中国微喷产业未来发展趋势及投资策略分析报告
- Friends《老友记》英文介绍(并茂)课件
- 公安派出所建设标准
- 小学开展仪式教育的策略研究
- 股骨颈骨折一病一品课件
- 小教文小学语文课堂导入存在问题及对策研究
- 教育部产学合作协同育人项目师资培训项目申报书模板(校企合作背景下软件开发类课程师资队伍建设)
- 美容院顾客管理档案表
- 锦鲤的繁殖与选优技术
- 四年级数学家长会课件
- 华北理工《社会医学》讲义11健康危险因素评价
- 透析饮食课件
评论
0/150
提交评论