




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、122 用坐标表示轴对称 教学目标 (一)教学知识点 1在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律 2利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形 (二)能力训练要求 1在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识 2在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系 (三)情感与价值观要求 在探索规律的过程中,提高学生的求知欲和强烈的好奇心 教学重点 1理解图形上的点的坐标的变化与图形的轴对称变换之间的关系 2在用坐标表示轴对称时发展形象思维能力和数形结合的意识 教学难点 用坐标表示轴对称 教学方法 探索发现
2、法 教具准备 课件,坐标纸 教学过程 提出问题,创设情境 活动11如图: (1)观察上图中两个圆脸有什么关系? (2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1) 你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗? 2在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案 (1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化? (2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用
3、线段依次连结起来,所得的图案又与原图案相比有何变化? 设计意图: 通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究 师生行为: 生1(1)观察可发现图中的两个圆脸关于y轴对称 (2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),嘴角的左右端为D(2,1),C(4,1)根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A到y轴的距离相等,A1、A到x轴的距离也相等,A1在第二象限,A1的坐标为(-2,3) 同理,B1、C1、
4、D1的坐标分别为(-4,3)、(-4,1)、(-2,1) 2师生共同完成生在直角坐标系中根据坐标描出四个点并依次连结如图A(2,2),B(4,2),C(4,4),D(2,4) (1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4),D1(-2,4)顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的 (2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4)顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的 师A(2,2)与A1(-2,2)关于y轴对称, B(4,2
5、)与B1(-4,2)关于y轴对称, C(4,4)与C1(-4,4)关于y轴对称, D(2,4)与D1(-2,4)关于y轴对称 那么关于y轴对称的点具有什么规律呢? A(2,2)与A2(2,-2)关于x轴对称, B(4,2)与B2(4,-2)关于x轴对称, C(4,4)与C2(4,-4)关于x轴对称, D(2,4)与D2(2,-4)关于x轴对称 那么关于x轴对称的点有何规律呢? 这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律 导入新课 活动2 在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中看看每对对称点的坐标有怎样的规律再和同学讨论一下 已知点A(2,-3),
6、B(-1,2),C(-6,-5),D(,1),E(4,0) 关于x轴的对称点A(_,_)B(_,_)C(_,_)D(_,_)E(_,_) 关于y轴的对称点A(_,_)B(_,_)C(_,_)D(_,_)E(_,_) 设计意图: 通过学生动手操作,分别作A,B,C,D,E关于x轴、y轴的对称点A,B,C,D,E;A,B,C,D,E,并且求出它们的坐标,观察,归纳它们坐标之间的关系 师生行为: 教师引导,学生自主探索发现关于x轴、y轴对称的每组对称点坐标的规律生如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0)点C/ . 我们先在坐标系中作出A
7、点关于x轴的对称点,即过A作x轴的垂线交x轴于M点,M点的坐标为(2,0)在AM的延长线上截AM=AM,则A就是A点关于x轴的对称点,所以A在第一象限,因为AM=AM,所以A的纵坐标为3,因为AAx轴,即AAy轴,所以A的横坐标为2,即A的坐标为(2,3)同理可求得B,C,D,E关于x轴的对称点B,C,D,E的坐标分别为B(-1,-2),C(-6,5),D(,-1),E(4,0)列表如下:已知点 A(2,-3)B(-1,2)C(-6,-5)关于x轴的对称点A(2,3)B(-1,-2) C(-6,5)续表已知点D(,1)E(4,0)关于x轴的对称点D(,-1) E(4,0) 师观察上表每对对称点
8、坐标之间的关系,你发现什么规律? 生每对对称点的横坐标相同,纵坐标互为相反数 师我们不仿再找几对关于x轴对称的点,写出它们的坐标,还有上面的规律吗? 学生亲自动手进一步尝试,在学生认可的情况下明确关于x轴对称的每对对称点的坐标的规律 师生共析 关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数 接着我们再来作出A,B,C,D,E关于y轴的对称点,并求出它们的坐标 生同样,我们先作出A关于y轴的对称点A,并求出A的坐标过A作y轴的垂线AN,垂足为N,则N点坐标为(0,-3),然后在AN的延长线上截AN,使AN=AN,则A就是所求的A关于y轴的对称点A在第三象限,AAy轴,且AN=AN,
9、所以A的坐标为(-2,-3),同理可求得B,C,D,E关于y轴的对称点B,C,D,E的坐标分别为B(1,2),C(6,-5),D(-,1),E(-4,0)列表如下:已知点 A(2,-3)B(-1,2)C(-6,-5)关于y轴对称点A(-2,-3) B(1,2)C(6,-5)续表已知点 D(,1)E(4,0)关于y轴对称点D(,1)E(-4,0) 师观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律? 生关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数 随堂练习 活动3 练习:(教科书P44练习) 设计意图: 巩固关于x轴、y轴对称的每对对称点的坐标规律根据已知点,能求出关于
10、x轴、y轴对称的点的坐标,并能利用关于坐标轴对称的点的坐标特点,作出与已知图形关于坐标轴对称的图形 师生行为: 学生练习,教师巡视,师生共评 活动4 补充练习: 1将下图中的点(2,1),(5,1),(2,5)做如下变化: (1)纵坐标不变,横坐标分别加2 (2)横坐标不变,纵坐标分别加1 (3)纵坐标不变,横坐标分别变为原来的2倍 (4)横坐标不变,纵坐标分别变为原来的2倍 (5)纵坐标不变,横坐标分别乘以-1 (6)横坐标不变,纵坐标分别乘以-1(7)纵坐标、横都分别乘以-1,观察变化后的三角形与原三角形有什么变化? 设计意图: 进一步让同学们亲身经历点的坐标的变化与图形变换之间的关系 师
11、生行为: 学生练习,教师指导 精析:行根据变化,把每次变化后的三个顶点坐标求出,在平面直角坐标系中描出它们,连结成新三角形,然后与原有的三角形进行比较精解:(1)纵坐标不变,横坐标分别加2得三个点依次为(4,1),(7,1),(4,5)将各点用线段依次连结起来,所得图形如图(1)所示,与原图形相比三角形的形状、大小不变,整个三角形向右平移了2个单位长度(2)横坐标不变,纵坐标分别加1,得三个点依次为(2,2),(5,2),(2,6)将各点用线段依次连结起来,所得图形如图(2)所示,与原图形相比,三角形的形状、大小不变,整个三角形向上平移了1个单位长度(3)纵坐标不变,横坐标分别变为原来的2倍,
12、得三个点依次为(4,1),(10,1),(4,5)将各点用线段依次连结起来,所得图形如图(3)所示,与原图形相比,整个三角形被横向拉长为原来的2倍(4)横坐标不变,纵坐标分别变为原来的2倍,得三个点依次为(2,2),(5,2),(2,10)将各点依次用线段连结起来,所得图形如图(4)所示,与原图形相比,整个三角形被纵向拉长2倍(5)纵坐标不变,横坐标分别乘以-1,得三个点坐标为(-2,1),(-5,1),(-2,5)将各点依次用线段连结起来,如图(5)所示,与原图形相比,三角形的形状、大小不变,整个三角形与原三角形关于y轴对称(6)横坐标不变,纵坐标分别乘以-1,得三个点坐标为(2,-1),(
13、5,-1),(2,-5)将各点用线段连结起来,如图(6)所示,与原图形相比,三角形的形状、大小不变,整个三角形与原三角形关于x轴对称(7)横纵坐标都分别乘以-1,得三个点坐标为(-2,-1),(-5,-1),(-2,-5)将各点用线段依次连结起来,如图(7)所示,与原图形相比,整个三角形的形状、大小不变,整个三角形与原三角形关于O点对称 课时小结 本节课的主要内容(由学生在教师的引导下共同回忆总结): 1在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律 2利用关于坐标轴对称的点的坐标的特点,作已知图形的轴对称图形,体现了数形结合的数学思想 课后作业 教科书习题 活动与探究1 如下图,以
14、树干为对称轴,画出树的另一半分析:要画出树的另一半,根据轴对称图形的性质,关于对称轴对称的对应点的横坐标是互为相反数,纵坐标不变,因此需要在图中先建立直角坐标系,写出对称轴左侧某些点的坐标,然后对称地写出右侧的对应点的坐标,再进行连结解:如上图所示建立直角坐标系,对称轴为y轴,y轴左侧的点A、C两点的坐标为(-4,0)、(-3,4),对称点A、C的坐标为(4,0)、(3,4),O、B、D三点都在对称轴上,然后用线段连结起来122 作轴对称图形 课时安排 2课时 从容说课 这部分内容与学生的实际生活联系比较紧密学生通过实际操作去体会轴对称图形的性质,并且可以利用轴对称变换来设计美丽的图案 在本节
15、的教学中有两个重点,一个是作出图形关于一条直线的对称图形,另一个重点是用坐标表示轴对称在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识和能力(2)注意学生运手能力的培养,在动手的过程中体会轴对称变换,并且对上一节的知识作进一步的理解(3)关注学生对知识技能的理解和应用,发展学生在实际应用中体会数学思想的能力 另外,在本节的探究中,也提出了一个应用较广泛的实际问题,要引导启发学生,初步培养学生运用数学知识解决实际问题的能力122。1 作轴对称图形 教学目标 (一)教学知识点 1通过实际操作,了解什么叫做轴对称变换 2如何作出一个图形关于一
16、条直线的轴对称图形 (二)能力训练要求 经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用 (三)情感与价值观要求 1鼓励学生积极参与数学活动,培养学生的数学兴趣 2初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识 3在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 教学重点 能够按要求作出简单平面图形经过轴对称后的图形 教学难点 1作出简单平面图形关于直线的轴对称图形 2利用轴对称进行一些图案设计 教学方法 讲练结合法 教具准备 多媒体课件 教学过程 设置情境,引入新课 在前一个章节,我们学习了轴对称图形以
17、及轴对称图形的一些相关的性质问题在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样 生甲将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形 生乙准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的 师大家回答得太好了,这节课我们就是来作简单平面图形经过轴对称后的图形 导入新课 师刚才同学们说出了几种得到轴对称图形的方法,由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分类似地,
18、我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案(电脑演示下面图案的变化过程)大家看大屏幕对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途 师下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下 (学生动手做) 结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同; 新图形上的每一点,都是原图形上的某一点关于直线
19、L的对称点; 连结任意一对对应点的线段被对称轴垂直平分 师我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换 成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的 动手做一做 (课件演示) 取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边回答下列问题 (1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由 (2)如果以相邻两个图案为一
20、组,每一组图案之间有什么关系?三个图案为一组呢?为什么? (3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做 注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些 投影仪演示学生的作品 (二)回顾本节课内容,然后小结 课时小结 本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案 课后作业 (课件演示)(一)如下图所示,取一张薄的正方形纸,沿对角线对折
21、后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90角的部分,拆开折叠的纸,并将其铺平 (1)你会得怎样的图案?先猜一猜,再做一做 (2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试 (3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为什么? (4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢? 答案:(1)得到一个有2条对称轴的图形 (2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)中的图案一定有2条对称轴 (3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,
22、因此得到的图案一定有4条对称轴 (4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,剪出的图案至少有4条对称轴 (二)自己设计并制作一个花边 122。1 作轴对称图形 教学目标 (一)教学知识点 1能够按要求作出简单平面图形经过轴对称后的图形 2轴对称的简单应用 (二)能力训练要求 1能够按要求作出简单平面图形经过轴对称后的图形 2培养学生运用轴对称解决实际问题的基本能力 3使学生掌握数学知识的衔接与各部分知识间的相互联系 (三)情感与价值观要求 1积极参与数学学习活动,对数学有好奇心和求知欲 2在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心 教学重点 能够按要求作出简单
23、平面图形经过轴对称后的图形 教学难点 应用轴对称解决实际问题 教学方法 讲练结合法 教具准备 多媒体课件,方格纸数张 教学过程 提出问题,创设情境 师上节课我们学习了轴对称变换的概念,知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的下面同学们来仔细观察一个图案 (课件演示) 以虚线为对称轴画出图的另一半: 导入新课师如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的因为我们来作一个点关于一条直线的对称点由已经学过的知识知道:对应点的连线被对称轴垂直平分所以,已知对称轴L和一个点A,要画出点A关于L的对应点A,可采取如下方
24、法: (1)过点A作对称轴L的垂线,垂足为B; (2)在垂线上截取BA,使BA=AB 点A就是点A关于直线L的对应点 好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性 例1如图(1),已知ABC和直线L,作出与ABC关于直线L对称的图形 师同学们讨论一下 生甲可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点这样就可以作出这个图形关于直线L的对称图形了 师说说看,找几个什么样的点就行呢? 生乙ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了 师好,下面大家一起动手做 作法:如图(2) (1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA=OA,点A就是点A关于直线L的对称点; (2)类似地,作出点B、C关于直线L的对称点B、C; (3)连结AB、BC、CA,得到ABC即为所求 师大家做完后,我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形 归纳: 几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形师看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键下图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告类长期合同合同范本
- 资源分红股份合同范本
- 社交电商的流量获取与转化策略
- 装修中标合同范本
- 社区环保活动中的生态教育创新与实践
- 电子商务的跨境合作与国际化发展策略
- 现代生活节奏下的胃肠疾病预防
- 科学运动对职业运动员的重要性
- 2025浙江省二轻集团秋季校园招聘笔试参考题库附带答案详解
- 包子老店转让合同范本
- SH∕T 3097-2017 石油化工静电接地设计规范
- 基础构成设计全套教学课件
- Python程序设计基础PPT(本科)完整全套教学课件
- (全国通用)三甲人民医院诊断证明书请假条模板(广东佛山)
- 表面工程学课件-全
- 《XX医院安宁疗护建设实施方案》
- 视频会议系统测试方案汇总
- 五年级第二学期体育知识结构图
- 复件德力西质量奖自评报告2战略
- 自主改善的活动方案
- 部编版三年级下册第八单元教材解读
评论
0/150
提交评论