


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新港中学“自主学习、小组合作”导学案学科主备人审核人教师活动及意图12.3.4.学习目标1. 使学生理解正多边形概念,初步掌握正多边形与圆的关系,2. 会通过等分圆心角的方法等分圆周,画出所需的正多边形,3. 能够用直尺和圆规作图,作出一些特殊的正多边形。4. 理解正多边形的中心、半径、边心距、中心角等概念5.学生培养学生对图形美的欣赏能力,让学生到生活中去发现美教师活动及意图学习重难点:正多边形的中心、半径、边心距、中心角等概念知识准备学海起航什么吗?1)概念:各边相等、各角也相等的多边形叫做正多边形如果一个正多边形有n(r正方形有四条边叫正四正多边形的定义?> 3)条边,就叫正n边形
2、等边三角形有三条边叫正三角形, 边形.问题:图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是 轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中 心对称图形,找出它的对称中心。(如果一个正多边形是中心对称图形,那么 它的中心就是对称中心。)温故而知新展示自学风采 看看谁比谁强发挥自学潜能你会有新发现读书自学小组合作探究新知讨论释疑思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有 何关系?问题:用直尺和圆规作出正方形,正六多边形。思考:如何作正三角形、正十二边形?拓展1:已知:如图,五边形 ABCD吶接于O 0, AB=BC=CD=DE=EA求证
3、:五边形 ABCDE1正五边形.(2)概念理解:请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形, )矩形是正多边形吗?为什么?菱形是正多边形吗?为什什么?问题:正多边形与圆有什么关系呢?什么是正多边形的 中 中心?拓展2:各内角都相等的圆内接多边形是否为正多边形相关概念:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等正多边形每一边所对的外接圆的圆心角发现:正三角形与正方形都有内切圆和外接圆,并且为同心 多边形的中心。心圆.圆心就是正当堂检测巩固提高分析:正
4、三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为360°叫做正多边形的中心角.正n边形的每个中心角都等于展示自学风采看看谁比谁强(一)判断学而不思则罔质疑释疑深化领悟知识梳理1、叫正多边形2、正多边性与圆的关系是。3正多边形的对称性牛刀小试课本题知识示回顾效果完成学案 你的收获1. 各边相等的多边形是正多边形()2. 各角相等的多边形是正多边形(3. 正十边形绕其中心旋转36°和本身重合(二八填空1.正多边形都是 对称图形,一个正 n边形有 条对称轴,每 条对称轴都通过正 n边形的;一个正多边形,如果
5、有偶数条边,那么它 旦又是对称图形。2、正十二边形的每一个外角为°每一个内角是°该图形绕其中心至 少旋转°和本身重合3、 用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最 小应为既是cm4 、正方形 ABCD的外接圆圆心 O叫做正方形 ABCD的5、正方形 ABCD的内切圆O O的半径OE叫做正方形 ABCD勺6、若正六边形的边长为1,那么正六边形的中心角是边心距是 ,它的每一个内角是 .正n边形的一个外角度数与它的角的度数相等度,半径是1 1.各边相等的多边形是正多边形()2. 各角相等的多边形是正多边形()3. 正十边形绕其中心旋转 36°和本身重合()(二八填空1、1.正多边形都是 对称图形,一个正 n边形有 条对称轴,每条对称轴都 通过正n边形的;一个正多边形,如果有偶数条边,那么它 既是,又是对称图形。2、正十二边形的每一个外角为°每一个内角是。该图形绕其中心至 少旋转°和本身重合3、 用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为cm4 4 、正方形 ABCD勺外接圆圆心 O叫做正方形 ABCD勺.5、 正方形 ABCD勺内切圆O O的半径 OE叫做正方形 ABCD勺.6、 若正六边形的边长为 1,那么正六边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年反担保合同协议样本
- 2025年江西省前期物业管理合同
- 2025试用期内用人单位能否与员工解除劳动合同
- 一年级新旅程
- 英语启蒙制作
- 银行创新前瞻
- 2025制片人与导演合同范本
- 2025【管理】福建省合同履行监督管理办法
- 眼科头低俯卧位的护理
- 设计师要帮公司做
- 2025商业综合体委托经营管理合同书
- 2024-2025学年北师大版生物七年级下册期中模拟生物试卷(含答案)
- 林业理论考试试题及答案
- 超市店长价格管理制度
- 2025-2030中国脑芯片模型行业市场发展趋势与前景展望战略研究报告
- 2025年河南省洛阳市洛宁县中考一模道德与法治试题(含答案)
- 掘进爆破、爆破安全知识
- 绿色工厂员工培训
- GB/T 17622-2008带电作业用绝缘手套
- 煤矿班组安全文化建设(课堂PPT)
- ISO15189体系性能验证报告模版-EP15
评论
0/150
提交评论