下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二课时 § 空间中直线与直线之间的位置关系一、教学目标:1、知能目标(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。2、情感目标让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。难点:异面直线所成角的计算。三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。2、教学用具:多媒体、长方体模型、三角板四、教学过程(一)课题导入1、通
2、过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A
3、9;B'C'D'中,BB'AA',DD'AA',BB'与DD'平行吗?生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=>acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。(2)例2(多媒体)例2的讲解让学生掌握了公理4的运用(3)教材P50探究让学生在思考和交流中提升了对公理4的运用能力。3、组织学生思考教材P51思考让学生观察、思考:ADC与A'D'C'、
4、ADC与A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:ADC = A'D'C',ADC + A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。教师强调:并非所有关于平面图形的结论都可以推广到空间中来。4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'a、b'b,我们把a'与b'所成的锐角(或直角)叫异面直线a与
5、b所成的角(夹角)。(2)强调: a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; 两条异面直线所成的角 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。(3)例3例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。(三)课堂练习教材P53 练习1、2充分调动学生动手的积极性,教师适时给予肯定。(四)课堂小结在师生互动中让学生了解:(1)本节课学习了哪些知识内容?(2
6、)计算异面直线所成的角应注意什么?(五)课后作业1、判断题:(1)ab ca => cb ( )(1)ac bc => ab ( )2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有 _ 条。3、P56习题2.1A组6第三课时§ 空间中直线与平面、 平面与平面之间的位置关系一、教学目标:1、知能目标(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。二、教学重点、难点重点:空间直线与平面、平面与平面之间的位置关系。难点:用图形表达直线与平面、平面与平面的位置
7、关系。三、学法与教学用具1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。2、教学用具:多媒体、长方体模型四、教学思想(一)课题导入教师以生活中的实例以及课本P53的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)(二)研探新知1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a=A a例4(多媒体展示)师生共同完成例4例4的给出加深了学生对这几种位置关系的理解。2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:(1)两个平面平行 没有公共点(2)两个平面相交 有且只有一条公共直线用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为L = L教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P55让学生独立思考,稍后教师作指导,加深学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高新技术企业委托招聘与研发团队构建合同3篇
- 2025年食材配送企业冷链物流服务合同3篇
- 2025版共享单车运维服务与用户租赁合同范本3篇
- 2025年度旅游汽车租赁及户外活动策划合同4篇
- 二零二五版高端养殖牛场合伙经营合同3篇
- 二零二五版科技创新园区党建资源共享合作协议3篇
- 2025年度煤矿设备采购及安装服务二零二五版合同4篇
- 郑州城建职业学院《中国民事诉讼法》2023-2024学年第一学期期末试卷
- 2024药品采购及质量管理体系认证合同3篇
- 2025年度市政工程承揽合同建设施工合同模板4篇
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 骆驼祥子-(一)-剧本
- 全国医院数量统计
- 《中国香文化》课件
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 第六次全国幽门螺杆菌感染处理共识报告-
- 2024-2030年中国商务服务行业市场现状调查及投资前景研判报告
- 高一英语必修一试卷(含答案)(适合测试)
- 中国的世界遗产智慧树知到期末考试答案2024年
- 中国绿色食品市场调查与分析报告
- 手卫生依从性调查表
评论
0/150
提交评论