软件开发中英文对照外文翻译文献_第1页
软件开发中英文对照外文翻译文献_第2页
软件开发中英文对照外文翻译文献_第3页
软件开发中英文对照外文翻译文献_第4页
软件开发中英文对照外文翻译文献_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、软件开发中英文对照外文翻译文献软件开发中英文对照外文翻译文献(文档含英文原文和中文翻译)软件开发中英文对照外文翻译文献译文:仿真软件开发低大型复杂腔基于UG的二次开发软件开发中英文对照外文翻译文献软件开发中英文对照外文翻译文献摘要-射击和弹跳射线(SBR)二次开发的基础软件是由国标库(UG)。射线跟踪的核心算法是基于优化的非均匀有理 b样(NURBS曲线表面相交算法建立在UG,导致非常高的射线路径跟踪的准确性没有啮合从而保持原有的空腔模型的准确性。它也是有效的避免同任何复杂的蛀牙,因为即使工作屏蔽的过程。两腔的几何建模及其散射模拟成一个统一的平台,形成一个易用的综合和环球环境电磁建模复杂的蛀牙

2、。在本文开发的软件对复杂腔散射建模引入了一些数值结果显示的准确性和效率 关键词-电大型复杂cavit;雷达截面;UG的二次开发;射击和弹跳射线(SBR);射线跟踪I. 介绍雷达截面(RCS)的分析电等大型复杂洞进口或出口,双面或三面角反射器等,是计算电磁学中最重要的主题之一。低大型复杂的空腔结构,只有基于高频方法如射击和弹跳射线(SBR)123是合适的。传统上,为三步骤采用SBRT先,模型腔的CA歆件和网格表面的内墙,然后出口信息网格的结果;其次发现表面上的光线的反射点ray-surface十字路口和屏蔽计算;最后计算RCS!卩将离任的射线从腔。虽然这些网基于射线跟踪可用于任意形状的蛀牙 从理

3、论上讲,它有不准确的缺点路径建立在复杂的蛀牙导致贫穷的RCS十算精度。电大型复杂的蛀牙,射线跟踪的效率很低,由于分离腔建模与RCS十算复杂的仿真过程。为了解决这些问 题,一个强大的CAD软牛,模拟电大型复杂腔并计算其 RCSE同一平台。开发的软件具有以下 优势:1)腔建模和RCS十算在UGM成,因此仿真过程大大简化。2)表面啮合没有必要而射线可 以追踪精度高和效率在任何任意形状的空腔。3)开发的软件是通用的电磁散射的凹面反射镜结构,如蛀牙和角落。小说射线追踪方法的新的先进的软件是基于UG勺二次开发将讨论下一步,和RCS仿真结果。II. 提出的方法射击和弹跳射线(SBR SBR 勺基本概念是一个

4、平面波由足够大量的平行光管(这里使用三角射线管)事件上的孔腔开放,每个射线管的能量集中在中线反映空腔墙基于几何光学定律和最终的开孔和树叶射线管 足迹在中央的场振幅计算射线通过考虑几何差异因素,极化和材料加载腔壁。的总散射提起腔由总结发现散射场计算每个管的基尔霍夫近似衍射场的足迹在这里rim是可以忽略的比较从腔背散射的主导部分。SBR勺详细理论可以在1和2 。b射线追踪方法基于UG勺二次开发 UG先进的CAD / CAM / CAE软件,采用非均匀有理b样(NURBS作为其主要的建模工具。它提 供了强大的建模能力和任意复杂腔建模精度高UG勺二次开发工具 UG /开放的API UG和外来的程序之间

5、的交互。UG / Open API包含大约2000个函数可以直接调用C+环境中有两种不同的模式对 UG /开放项目:内部模式和外部 模式。通过构建一个动态链接库允许访问几何模型及其相对日期在国标库会话直接使用UG/开放的API函数。内部模式是使用 DLL链接,在连接速度快的优势,因此,本文选择了使用UG / 开放api,可以建立一种有效的射线追踪方法和高精度优化基于NURB曲线表面相交的算法。没有复杂的啮合和屏蔽程序,新的射线跟踪方法更容易比传统项目。图1显示了发现每个光线的反射点在腔室内的墙上发达的射线追踪方法。如果利用三角射线管,四个射线包括三条边和一个中央线管,需要追踪如上所述。请全部实

6、现的蛀牙与平台结构通过跟踪只有中央射线 正如上面所讨论的。后找到一个反射点内墙,飞机的数学表达式可以使用点的坐标和单位法向量,然后反射光线的三条边射线管根据解析后的飞机可以找到。这进一步进步会带来一个 巨大的减少射线追踪的时间。图1所示。射线路径发现的射线追踪方法基于UG勺二次开发。这个图显示三个入射光线 入射方向发射的,和路径从参考点的s形腔,然后反映在内墙,最后到达开孔。事实上,这部小说SBRE面讨论不仅可以应用在蛀牙 ,但也提供了一种新方法的电大尺 寸目标的散射计算考虑多个现场互动,和过程将大大简化由于避免啮合和屏蔽需要在传统的物理光学(P0)。该方法的过程仿真过程的方法是:1)模型或在

7、U(中导入一个腔会话。2)自动识别腔开放光圈。3)代表 了入射波与数量足够大的平行光管开孔腔和发射射线追踪。4)计算每个即将离任的背散射场在开孔管足迹。5)总结的背散射场管足迹和计算RCS勺腔。软件是通用的相对任意蛀牙和凹结构由于小说射线追踪方法建立与UG /开放API函数和一个统一的平台整合腔在 UG1模和RC计算。RAM涂层蛀牙也可以轻松地在这个软件。 一个用 户友好的界面与 UG / Open UlStyler 发达,在UGt供的GUI工具Ill.数值结果本文模拟了使用矩形腔,一个三角形的三面角反射器和一个矩形入口压电陶瓷墙来演示 开发的软件。计算环境是奔腾 4 - 2.8 ghz处理器

8、,1 gb内存和Windows XP操作系统。入射波 频率10 GHz, 一步是程度1°模拟,俯仰角度B从+ z方向和方位角度$从+ x方向的模型。A. RCS的矩形腔和效率分析图2显示了 RCS勺矩形腔的比较10 _,_方形截面,30 长度7和模拟结果与开发的软件在 不同的N(N是每个波长的节点数量,有四个光管穿过每个网格开放 ,所以光管的数量NX NX4 平方波长)。这个数字表明快速收敛的开发了SBR勺基础上提出新的射线追踪与平台腔结构。结果得到收敛当N达到4,线管的数量是64平方波长在这种情况下,N是以下模拟设置为4。模拟 结果与7中的结果吻合较好。表1显示了 CPU寸间不同N

9、在上面模拟,演示了该方法的效率高。表一、CPU寸间不同的NN 2345CPU寸间(分钟)1.704.018.3717.49B. 三角形的三面角反射器的 RCSRCS十算的三角形三面角反射器 5 _边长度是如图3所示.我们的结果再次同意与 MLFMM FEKO勺结果很好。微小的区别来自于衍射场不覆盖目前在我们的结果。.需要1.67分钟和45分钟为我们的软件和FEK分别模拟结果。如此高的效率使它适合计算电磁散射从电大型复杂 腔没有要求额外的计算机内存。C. 矩形进气道的RCS散射模拟飞机的入口 ,典型的电大型复杂腔,在计算电一一磁学仍然是一个挑战性的任 务。图4是一个矩形入口的模型7和其RCSI拟

10、软件。需要16.58分钟,25.15分钟得到的结果 装具(b)和(c)。找到优秀的协议与参考文献7中的结果。所有这些结果验证新的射线追踪方法的准确性对于复杂的蛀牙在我们开发的软件。(a)个矩形入口的模型b-KJSjE<MU1 亡般労上叱"He 二 m ns|:_ 匱(c >丰M普图4.矩形进气道的RCS平行极化IV. 结论一个新颖的射线追踪方法和相应的SBF相对任意腔散射模拟软件开发基于UG的二次开发。软件的仿真程序进行了探讨。一些结果,显示良好的准确性和效率高的散射建模电大型复杂的蛀牙。参考文献1 郝凌、周Ri-chee Shung-wu李。射击和弹跳射线:RCS的计算

11、任意形状的空腔。IEEE反式天线 progat,1989 年,37(2):194- 2052 角色h 帕沙克,罗伯特j 霍尔德。模态、射线和梁的技术分析开放式波导腔的电磁散 射。IEEE反式天线 progat,1989 年,37(5):635 - 6473 嬴政阮。电磁辐射的基本理论。成都电讯工程学院出版社,1984年4 傅雅宁。计算机图形学。国防工业出版社,2005李建州,徐家栋,等。基于国标库的设计评估软件。中国无线电科学学报,2005,20(2):222-2256李建周,徐家栋等.综合RCS雷达截面)计算一个更有效的RCS十算方法。西北工业大学学 报,2003,21 (4):449 -

12、4527郝凌,Shung-wu李Ri-chee周。高高频RCS放腔的矩形和圆形的横截面。IEEE反式天线progat,1989 年,37(5):648- 654软件开发中英文对照外文翻译文献原文:Development of RCS simulation software for electrically large complex cavities based on the secondary development of UGLI Jia nzhou JIANG Yi ngfu XU Jiad ong School of Electr onics and In formati on. No

13、rthwestern Polytechnical University, Xi ' an Shanxi 710129, ChinaAbstrac -t-A shooti ng and bouncing ray (SBR) based software is developed by the sec on dary developme nt of Uni graphics (UG). The core algorithm of ray traci ng is based on the optimized Non-un iform Rati onal B-spli nes(NURBS) c

14、urve-surface in tersect ion algorithm built in UG, which results in very high accuracy of ray path trac ing without meshi ng thus keep ing the accuracy of theoriginal cavity model. It is also efficient even if work witha complex cavities because of avoid ing of shieldi ng process. Both geometry mode

15、li ng of cavity and its scatteri ng simulatio n areinto a uniformplatform, which forms an easy-us ing in tegrative and uni versal environment for electromag netic modeling of complex cavities. 。In this paper, the developed software for complex cavity scattering modeli ng has bee n in troduced with s

16、ome nu merical results todem on strate the accuracy and efficie ncyKey words-electrically large complex cavit; Radar Cross Section; sec on dary developme nt of UG; shooti ng and bouncing rays (SBR); ray-traci ngI. INTRODUCTIONRadar cross sect ion (RCS) an alysis of electrically large complex cavitie

17、s such as inlet or outlet, dihedral or trihedral corner reflector etc., 。 is one of the mostimportant topics in computati onal electromag netics. Forelectrically large complex cavity structures, only high freque ncy based method such as shooti ng and bouncing ray (SBR)123 is suitable. Traditi on all

18、y, there arethree steps to employ SBR Firstly, to model the cavity in CAD software and mesh surfaces of its in terior walls,the n exports in formati on of the mesh results; sec on dly finding the reflecti on points of the rays on the surfaces by ray-surface in tersect ion and shieldi ng calculatio n

19、;fin ally calculates RCS from the outgo ing rays from the cavity.Although such mesh based ray tracing can be used in arbitrarily shaped cavities theoretically,it has the disadvantage of in accurate paths founding in complex cavities which lead to a poor RCS calculati on accuracy 。 For electrically l

20、arge complex cavities, the efficie ncy of ray trac ing is very low due to the separati on of cavity modeli ng and RCS calculati on witha complicated simulati on procedure. To address theseproblems, an in tegrated simulati on software isdeveloped based on sec on dary developme nt of Uni graphics (UG)

21、, , a powerful CAD software, to model electrically large complex cavity and calculate its RCS as well in the same platform. The developed software has the followi ng adva ntages: 1) Cavity modeli ng and RCS calculati on are in tegrated in UG, therefore the simulatio n procedure is greatly simplified

22、. 2) Surface mesh ing is n ot n ecessary whereas rays can be traced with high accuracy and efficie ncy in side any arbitrarily shaped cavity. 3) The developed software is uni versal for electromag netic scatteri ng from any kind of con cave structures such as cavities and corner reflectors. A novel

23、ray traci ng method of this new adva need software which is based on the sec on dary developme nt of UG will be discussed next, and the RCS simulatio n results are followed. II. PROPOSED METHOD A. Shoot ing and bou ncing rays (SBR)The basic con cept of SBR is that a pla ne wave represe nted by a suf

24、ficie ntly large nu mber of parallel ray tubes (tria ngular ray tube is used here) in cide nt onto the aperture at the cavity ope n end, each ray tube with en ergy concen trated on the centre line reflects from the cavity walls based on the law of geometrical optics and eventually comes to the openi

25、ng aperture and leaves a ray-tube footprint on it The field amplitude of thecentral ray is calculated by taking consideration of geometrical diverge nee factor, polarizati onand material loadi ng of the cavity walls. The totalscatteri ng filed ofthe cavity is found by sum ming up the scatteri ng fie

26、ld calculated byKirchhoff ' s approximation from eachndividual tube footprint In here the diffracting field of the rim is n egligible compari ng to the domin ate porti on of back scatteri ng from the cavity. The detail theory of SBR can be found in 1 and 2. B. Ray traci ng method based on sec on

27、 dary developme nt of UGUG is adva need CAD/CAM/CAE software which uses Non-un iform Ratio nal B-spli nes (NURBS) as its main modeling tool. It provides powerful modeling ability and high accuracy for arbitrarily complex cavity modeli ng. The sec on dary developme nt tools UG/Ope n API of UG in tera

28、ct betwee n UG and exter n program. UG/Ope n API contains approximately 2000 fun cti ons which can be called directly in C+ environment There are two differe nt modes for UG/Ope n programs: Internal Mode and External Mode. By building a dynamic-link library allows to access the geometry model and it

29、s relative date with in a Uni graphics sessi on using UG/Ope n API functions direct ".Internal Mode is using DLL link which has the adva ntage of fast i n speed linking, therefore it has bee n chose n in this paper By using UG/Ope n APIs, an efficie nt ray traci ng method can be built with high

30、 accuracy based on optimized NURBS curve-surface in tersect ion algorithm. Without complicated meshi ng and shieldi ng procedures, the novel ray trac ing method is much easier to program tha n the traditi onal one. Figure 1 shows finding the reflect ion points of each ray on cavity in terior walls w

31、ith developed ray traci ng method.The procedure of ray traci ng is based on the sec on dary developme nt of UG: 1) Get the ide ntifier of the simulated cavity. Each item modeled in UG has its own identifier (tag) from which all the geometry information can be identified ray-surface in tersectio n fu

32、n ctio ns in UG/Ope n API. The in terested parameters in cludi ng the coord in ates of the in tersectio n poi nts on the cavity walls, the un it no rmal vectors and the radius of prin cipal curvature can be extracted with a few in putt ing in formati on, such as cavity ide ntifier, the coord in ates

33、 of the start ing point and the in cide nt direct ion of the ray. 3) Use Sn ell' s leetotiondraiyeat the in terior in tersect ion point,and repeati ng the procedures above to find the n ext in terior in tersect ion point till the ray shoot out the cavity from the ope ning aperture. Also the effe

34、ct of RAM coat ing can be easily added to the developed SBR procedure. In gen eral, if tria ngular ray tube is utilized, four rays in cludi ng three edges and one cen tral ray of the tube, are n eeded to be traced as described above.。 be achievedfor the cavities with plat structures by traci ng only

35、 the cen tral ray as discussed above. After finding a reflect ion point on the in terior walls, the mathematical expressi on of the pla ne can be obta ined using the coord in ates and un it no rmal vector of that point and the n the reflect ion rays of the three edges of the ray tube can be found ac

36、cording to the resolved plane. This further improveme nt leads to a huge reducti on of ray trac ing time.Figure 1. The ray paths found by the ray traci ng method based on the sec on dary developme nt of UG. This figure displays three in cide nt rays laun ched from the in cide nt direct ion, and the

37、paths start from the reference points out of the S-shaped cavity, then reflect at the interior walls, and fin ally arrive at the ope ning aperture.In fact, the no vel SBR discussed above not only can be applied on cavities, but also provides a new way of scattering calculation of electrically large

38、targets with considering multiple field in teracti on, and the procedure will be greatly simplified thanks to avoiding meshing and shielding needed in traditional physical optics (PO). C. Process of the Proposed MethodThe simulation procedure of proposed method is: 1) Model or import a cavity in UG

39、session. 2) Identify the cavity and opening aperture automatically. 3) Represent the incident wave with a sufficie ntly large nu mber of parallel ray tubes on the ope ning aperture and launch ray traci ng in the cavity. 4) Calculate the back scattering field of each outgoing tube footprint on the op

40、ening aperture. 5) Sum up the back scattering field of all the tube footprints and calculate RCS of the cavity.The software is uni versal for relatively arbitrary cavities and con cave structures due to the novel ray tracing method built with UG/Open API functions and a uniform platform integrating

41、cavity modeli ng and RCS computing in UG. RAM coated cavities can also be easily performed in this software. A user frie ndly in terface is developed with UG/Open UIStyler, the GUI tool provided in UG.III. NUMERICAL RESULTSIn this paper, the simulations have been done using a rectangular cavity, a t

42、riangular trihedral corner reflector and a recta ngular inlet with PEC walls to dem on strate the developed software. The computati on en viro nment is Pen tium 4 - 2.8GHz processor, 1GB memory with Win dows XP operati ng system.In cide nt wave freque ncy is 10 GHz, and the degree step is 1 for all

43、the simulations, the pitch ing angle 0 starts from dZrection and the azimuth a ngle $ starts from +Xrection in the models. A. RCS of recta ngular cavity and the efficie ncy an alysisFigure 2 shows the comparis on of RCS of arecta ngular cavity with 10_ by 10_ square cross secti on, 30_ len gth in 7

44、and simulated results with developed software in differe nt N (N is the nu mber of no des per wavele ngth, there are four ray tubes going through each grid on the ope ning, so the nu mber of ray tubes is N NX4 in a square wavele ngth). This figure in dicates fast con verge nee of the developed SBR b

45、ased on the proposed no vel ray traci ng for a cavity with platstructures. The results get con verge nt whe n N reaches 4, and the nu mber of ray tubes is 64 in a square wavele ngth in this case, so N is set to 4 for the follow ing simulati ons. The simulated results agree well with the results in 7

46、.0(DEGREES)Figure 2. RCS of rectangular cavity with different N, parallel polarizationTable 1 shows CPU time for differe nt N in above simulatio n, which dem on strates high efficie ncy of the proposed method. TABLE I. CPU TIME FOR DIFFERENT NN2345CPU time (min ) 1.704.01 8.3717.49B. RCS of a triang

47、ular trihedral corner reflectorCalculated RCS of a triangular trihedral corner reflector with 5_ edge length is shown inFigure 3. Our result aga in agrees very well with the MLFMM result ofFEKO. The slight differe nee comes from the diffractio nfield which is not covered at the moment in our result.

48、 It takes 1.67min and 45min for our software and FEKO respectively, to simulate the results. Such high efficiency makes it suitable for calculating electromagnetic scattering from electrically large complex cavities without requireme nt of additi onal computer memory.x -inp 41“ -developed software.F

49、igure 3. RCS of a triangular trihedral corner reflector,?= 45° ,parallel polarizationC. RCS of a recta ngular in letScatteri ng simulati on of inlet of aircraft, typical electrically large complex cavity, rema ins a challenging task in computational electro- magnetics. Figure 4 is the model of

50、a rectangular iniet7 and its RCS simulated by our software. It takes 16.58min and 25.15min to get the result of Figure4 (b) and (c) respectively. Excelle nt agreeme nt is found with the result in reference 7. All these results validate the accuracy of the novel ray trac ing method for complex cavities withi n our(a) The model o

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论