版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二年级理科数学选修2-1期末试卷(测试时间:120分钟 满分150分)注意事项:答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效本卷考试结束后,上交答题纸一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题,其中正确的是 ( )(A) (B) (C) (D) 2. 抛物线的焦点坐标是 ( )(A)( , 0) (B)(, 0) (C)(0, ) (D)(0, )3. 设,则是 的 ( )(A)充分但不必要条件 (B)必要但不充分条件(C)充要条件 (D)既不充分也不必要条件4. 已知ABC的三个顶点为A(3
2、,3,2),B(4,3,7),C(0,5,1),则BC边上的中线长为 ( )(A)2 (B)3 (C)4 (D)55.有以下命题:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;为空间四点,且向量不构成空间的一个基底,则点一定共面;已知向量是空间的一个基底,则向量也是空间的一个基底。其中正确的命题是 ( )(A) (B) (C) (D)6. 如图:在平行六面体中,为与的交点。若,则下列向量中与相等的向量是( )(A) (B)(C) (D)7. 已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是 ( )(A)(x0) (B)(x0) (C)(x0
3、) (D)(x0)8. 过抛物线 y2 = 4x 的焦点作直线交抛物线于A(x1, y1)B(x2, y2)两点,如果=6,那么 ( ) (A)6 (B)8 (C)9 (D)109. 若直线与双曲线的右支交于不同的两点,那么的取值范围是 ( )(A)()(B)() (C)() (D)()10.试在抛物线上求一点P,使其到焦点F的距离与到的距离之和最小,则该点坐标为 ( )(A) (B) (C) (D)11. 在长方体ABCD-ABCD中,如果AB=BC=1,AA=2,那么A到直线AC的距离为 ( )(A) (B) (C) (D) 12.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴
4、的直线与椭圆交于A、B两点,若ABF2为正三角形,则该椭圆的离心率为 ( )(A) (B) (C) (D)二、填空题(每小题4分,共4小题,满分16分)13.已知A(1,2,11)、B(4,2,3)、C(x,y,15)三点共线,则x y =_。14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是_米。15. 如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是_。16.一个命题的逆命题为真,它的否命题也一定为真;在中,“”是“三个角成等差数列”的充要条件.是的充要条件;“am2<bm2 ”是“a<b”的充分必要条件.以上说法中,判断错误的有_
5、.三、解答题(共6小题,满分74分)17.(本题满分12分)设:方程有两个不等的负根,:方程无实根,若p或q为真,p且q为假,求的取值范围18.(本题满分12分)已知椭圆C的两焦点分别为,长轴长为6,求椭圆C的标准方程;已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.19.(本题满分12分)如图,已知三棱锥的侧棱两两垂直,且,是的中点。(1)求异面直线与所成角的余弦值;(2)求直线BE和平面的所成角的正弦值。20.(本题满分12分)在平面直角坐标系O中,直线与抛物线2相交于A、B两点。(1)求证:命题“如果直线过点T(3,0),那么3”是真命题;(2)写出(1)中
6、命题的逆命题,判断它是真命题还是假命题,并说明理由。21.(本题满分14分)如图,棱锥PABCD的底面ABCD是矩形,PA平面ABCD,PA=AD=2,BD=.(1)求证:BD平面PAC;(2)求二面角PCDB余弦值的大小; (3)求点C到平面PBD的距离.22. (本题满分12分)如图所示,F1、F2分别为椭圆C:的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点到F1、F2两点的距离之和为4.(1)求椭圆C的方程和焦点坐标;(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求F1PQ的面积.高二年级理科数学选修2-1期末试卷参考答案一、选择题: 题号123456789101112
7、答案CAABCABBDACD二、填空题: 13、 2 14、 15、 16、三、解答题: 17、解:若方程有两个不等的负根,则, 2分所以,即 3分 若方程无实根,则, 5分即, 所以 6分 因为为真,则至少一个为真,又为假,则至少一个为假 所以一真一假,即“真假”或“假真” 8分 所以或 10分 所以或 故实数的取值范围为 12分18、解:由,长轴长为6 得:所以 椭圆方程为 5分设,由可知椭圆方程为,直线AB的方程为 7分把代入得化简并整理得 10分又 12分19、解:(1)以为原点,、分别为、轴建立空间直角坐标系.则有、3分COS<> 5分所以异面直线与所成角的余弦为 6分(
8、2)设平面的法向量为 则, 8分则,10分故BE和平面的所成角的正弦值为 12分20、证明:(1)解法一:设过点T(3,0)的直线l交抛物线=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于A(3,)、B(3,),。 3分当直线l的钭率存在时,设直线l的方程为y=k(x3),其中k0.得ky22y6k=0,则y1y2=6. 又x1=y12, x2=y22, =x1x2+y1y2=3. 7分综上所述, 命题“.”是真命题. 8分解法二:设直线l的方程为my =x3与=2x 联立得到y2-2my-6=0 =x1x2+y1y2=(m
9、y1+3) (my2+3)+ y1y2=(m2+1) y1y2+3m(y1+y2)+9=(m2+1)× (-6)+3m×2m+93 8分(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).” 10分该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为y = (x+1),而T(3,0)不在直线AB上. 12分点评:由抛物线y2=2x上的点A(x1,y1)、B(x2,y2)满足,可得y1y2=6。或y1y2=2,如果y1y2=6,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(1
10、,0),而不过点(3,0)。21、解:方法一:证:在RtBAD中,AD=2,BD=, AB=2,ABCD为正方形,因此BDAC. PA平面ABCD,BDÌ平面ABCD,BDPA .又PAAC=A BD平面PAC. 解:(2)由PA面ABCD,知AD为PD在平面ABCD的射影,又CDAD, CDPD,知PDA为二面角PCDB的平面角. 又PA=AD,PDA=450 . yzDPABCx(3)PA=AB=AD=2,PB=PD=BD= ,设C到面PBD的距离为d,由,有, 即,得 方法二:证:(1)建立如图所示的直角坐标系,则A(0,0,0)、D(0,2,0)、P(0,0,2).2分在RtBAD中,AD=2,BD=, AB=2.B(2,0,0)、C(2,2,0), ,即BDAP,BDAC,又APAC=A,BD平面PAC. 4分 解:(2)由(1)得. 设平面PCD的法向量为,则,即, 故平面PCD的法向量可取为 PA平面ABCD,为平面ABCD的法向量. 7分设二面角PCDB的大小为q,依题意可得 . 9分 (3)由()得,设平面PBD的法向量为,则,即,x=y=z,故可取为. 11分 ,C到面P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都职业技术学院《资产评估概论》2023-2024学年第一学期期末试卷
- 成都艺术职业大学《商务谈判与礼仪》2023-2024学年第一学期期末试卷
- 2025版家具展览展示合同范本:家具展览展示服务合作协议3篇
- 2024年特许经营合同范例详述
- 2024煤矿安全生产信息化建设技术服务合同3篇
- 2025版个人健身教练服务及器材融资租赁合同3篇
- 计算机辅助设计与计算机辅助制造(CADCAM)技术在牙科正畸中的应用
- 产业园区辐射带动作用的实施路径
- 二零二五年度养老产业股权质押典当借款服务协议书3篇
- 轻钢结构施工方案
- 中医院医院设备科工作总结
- JC/T 414-2017 硅藻土行业标准
- 组织学与胚胎学课程教学大纲
- 网络传播概论(第5版) 课件 第一章 网络媒介的演变
- 2023-2024学年江西省鹰潭市余江区八年级(上)期末数学试卷(含解析)
- 2023北京西城六年级(上)期末英语试卷含答案
- 珠海金湾区2023-2024学年七年级上学期期末数学达标卷(含答案)
- 京东五力模型分析报告
- XX学校2024年校长务虚会讲话稿范文
- 大学英语四级考试模拟试卷(附答案)
- 广西壮族自治区钦州市浦北县2023-2024学年七年级上学期期末历史试题
评论
0/150
提交评论