下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.北八上第三章?图形的平移与旋转?程度测试A一、填空题1图形的平移、旋转、轴对称中,其一样的性质是_2经过平移,对应点所连的线段_3经过旋转,对应点到旋转中心的间隔 _4ABC平移到ABC,那么SABC_SABC5等边三角形绕着它的三边中线的交点旋转至少_度,可以与本身重合6甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向_平移_个单位可以得到甲图7边长为4 cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的道路长为_cm89点30分,时钟的时针和分针的夹角是_二、解答题9请画一个圆,画出圆的直径AB,分析直径AB两侧的两
2、个半圆可以怎样互相得到?10作线段AB和CD,且AB和CD互相垂直平分,交点为O,AB=2CD分别取OA、OB、OC、OD的中点A、B、C、D,连结CA、DA、CB、DB、AC、AD、BC、BD得到一个四角星图案将此四角星沿程度方向向右平移2厘米,作出平移前后的图形11在下面的正方形中,以右上角顶点为旋转中心,按逆时针旋转一定角度后使之与原图形成轴对称12过等边三角形的中心O向三边作垂线,将这个三角形分成三部分这三部分之间可以看作是怎样挪动互相得到的?你知道它们之间有怎样的等量关系吗?13如图,有一池塘,要测池塘两端A、B的间隔 ,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D
3、,使CD=CA连结BC并延长到E,使CE=CB连结DE,那么量出DE的长,就是A、B的间隔 ,为什么?线段DE可以看作哪条线段平移或旋转得到14画线段AB,在线段AB外取一点O,作出线段AB绕点O旋转180°后所得的线段AB请指出AB和AB的关系,并说明你的理由15如图,四边形ABCD是平行四边形1图中哪些线段可以通过平移而得到;2图中哪些三角形可以通过旋转而得到16同学们用直尺和三角板画平行线,这种画平行线的方法利用了怎样的挪动?由此我们得出了什么结论?17如图,ABC通过平移得到ECD,请指出图形中的等量关系18请你指出BDA通过怎样的挪动得到CAE19如图,你能说明ABC通过怎
4、样的挪动可以得到BAD吗?20请你以“植树造林为题,以等腰三角形为“根本图形利用平移设计一组有意义的图案,完成后与同学进展交流21由一个半圆包含半圆所对的直径和一个长方形组成一个“蘑菇图形,将此图形作为“根本图形经过两次平移后得到一组图案这样的图案是否可作为公园中“凉亭的标志呢?请你设计一下这个标志参考答案一、1图形的形状、大小不变,只改变图形的位置2平行且相等3相等4等于51206右2748105°二、9绕圆心旋转180°或以直线AB为对称轴翻折1011略12旋转120°,它们是全等四边形,面积相等,对应线段、对应角相等13ABCDCE,AB=DE,线段DE可看作AB绕点O旋转180°得到14ABAB且AB=AB,因为AOBAOB151AB和DC,AD和BC2AOB和COD,BOC和DOA,ABC和CDA,ABD和CDB16平移,平行公理:同位角相等两直线平行17AB=EC,AC=ED,BC=CD,A=E,B=ECD,ACB=D,A=ACE18BDA先绕点A逆时针旋转,使DA和AB在一条直线上,然后再以过A点垂直AB的直线为对称轴作它的对称图形或将BDA绕点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《子网掩码的计算》课件
- 第6单元 科技文化与社会生活(B卷·能力提升练)(解析版)
- 百货商店电器城保安工作总结
- 集装箱散货转化公路运输代理协议三篇
- 2023-2024年员工三级安全培训考试题附参考答案【典型题】
- 乘除法应用题课件
- 2023年-2024年企业主要负责人安全培训考试题附解析答案
- 教育资源整合研究报告
- 《督脉与腧穴》课件
- 云平台下的供应链协同-洞察分析
- 车辆驾驶考试培训委托书
- 开票税点自动计算器
- 2024亲戚借名买房协议书
- 小学二年级上册数学-数角的个数专项练习
- 期末核心素养测评卷2023-2024学年语文五年级上册+统编版
- 医疗器械质量安全风险会商管理制度
- 《我爱上班》朗诵稿
- 2024年石油石化技能考试-石油钻井工笔试参考题库含答案
- 2024年度带状疱疹课件
- 电桩采购安装充电桩调试验收方案
- 消防设施安全检查表
评论
0/150
提交评论