版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考分式及分式方程计算题、答案解答题(共30小题)A 一 1-_ L_xfl (x+1)Cx-2)(2011?乌鲁木齐)解方程:3貸+?(2011?威海)解方程: 一J112-1(2011?随州)解方程:三一丄二1.I4x3(2011?陕西)解分式方程:K_22 -(2011?綦江县)解方程:35x-3_K+11.2.3.4.5.6.7.8.9.10.11.12.13.14.(2011?咸宁) 解方程(2011?茂名)解分式方程:3/ - 12r+2(2011?自贡)解方程:(2011?孝感)解关于的方程:=1(2011?潼南县)解分式方程:(2011?台州)解方程:(2011?攀枝花)解方程
2、:(2011?宁夏)解方程:27. (2009?南昌)解方程:3(2011?昆明)解方程:k- 24 (x+1)18.(2011?巴中)解方程:1 - 2i+2x+119.(2011?巴彦淖尔)(1)计算:|-2|+(卜门+1)-(2)解分式方程:卡丁磊+23.(2010?西宁)解分式方程:24.(2010?恩施州)解方程:- l-p :25.(2009?乌鲁木齐)解方程:宫-2 g26.(2009?聊城解方程:.厂120. (2010?遵义)解方程:21. (2010?重庆)解方程:22. (2010?孝感)解方程:15. (2011?荷泽)(1)解方程:(2)解不等式组-22 (16. (
3、2011?大连)解方程:17. (2011?常州)解分式方程x+1x+1页-:-1).刊二I - 122 - x23解不等式组I)-1+tan6027. (2009?南昌)解方程:28. (2009?南平)解方程:41_x- 亠3二x-22-x29. (2008?昆明)解方程:汽宀二1SK-1 1 -2K30. (2007?孝感)解分式方程:一- =-212L-1答案与评分标准.解答题(共30小题)解分式方程。计算题。方程两边都乘以最简公分母y(y-1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y-1),得2y2+y(y-1)=(
4、y-1) (3y-1),2 2 22y +y-y=3y-4y+1,3y=1,y是原方程的解,原方程的解为(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)2. (2011?孝感)解关于的方程:I :考点:解分式方程。专题:计算题。分析:观察可得最简公分母是(x+3)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(x+3)(x-1),得x(x-1)=(x+3) (x-1)+2(x+3), 整理,得5x+3=0,考点:专题:分析:点评:本题考查了解分式方程, 解分式方程一定注意要验根.3y-l1.(2011检验:当,y(y-
5、1) =(吉1)=-彳旳,解得x=-卡.5检验:把x=-代入(x+3) (x-1)旳.原方程的解为:x=-点评:本题考查了解分式方程.(1)解分式方程的基本思想是 转化思想”把分式方程转化为整式方程求解. 解分式方程一定注意要验根.3.(2011?咸宁)解方程-考点: 解分式方程。专题: 方程思想。分析: 观察可得最简公分母是(x+1) (x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答: 解:两边冋时乘以(x+1) (x-2),得x(x-2)-(x+1) (x-2)=3. (3分) 解这个方程,得x=-1. (7分)检验:x=-1时(x+1) (x-2)=0,x=-1不
6、是原分式方程的解,原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.1 34. (2011?乌鲁木齐)解方程: -=+1.K_1岛一/考点:解分式方程。专题:计算题。分析:观察可得最简公分母是2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:原方程两边同乘2(x-1) ,得2=3+2(x-1),解得x=2,2检验:当乂=丄时,2(x-1)旳,原方程的解为:x=2.点评:本题主要考查了解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解,解分式方程一定注意要验
7、根,难度适中.5. (2011?威海)解方程:1 x2-l考点:解分式方程。专题:计算题。分析:观察可得最简公分母是(x-1) (x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(x-1) (x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1) (x+1)=-1老.原方程的解为:x=0.点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.6. (2011
8、?潼南县)解分式方程:3考点:解分式方程。分析:观察可得最简公分母是(X+1) (x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘(X+1) (X-1),得x(X-1)-(x+1)=(x+1) (X-1) (2分)化简,得-2x-仁-1(4分)解得x=0(5分)检验:当x=0时(x+1) (x-1), x=0是原分式方程的解.(6分)点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2011?台州)解方程:,:考点: 解分式方程。专题: 计算题。分析: 先求分母,
9、再移项,合并冋类项,系数化为1,从而得出答案.解答: 解:去分母,得x-3=4x(4分)移项,得x-4x=3,合并同类项,系数化为1,得x=-1(6分) 经检验,x=-1是方程的根(8分).点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.&(2011?随州)解方程:盘尸丄二1考点:解分式方程。专题:计算题。分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x+3),得2(x+3)+x =x(x+3),2 22x+6+x =x +3x,二x=6检验:把x=6
10、代入x(x+3)=54老,原方程的解为x=6.点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.9.(2011?陕西)解分式方程: 一K_J Z_K考点:解分式方程。专题:计算题。分析:观察两个分母可知,公分母为x-2,去分母,转化为整式方程求解,结果要检验.解答:解:去分母,得4x-(x-2)=-3,去括号,得4x-x+2=-3,移项,得4x-x=-2-3,合并,得3x=-5,化系数为1,得x=-检验:当x=-上时,X-2和,原方程的解为x=-_.3点评:本题考查了分式方程的解法.(1)解分式方程的基本思想是转化思想”,把分式方程转化为
11、整式方程求解.(2)解分式方程一定注意要验根.10.(2011?綦江县)解方程:-考点:解分式方程。专题:计算题。分析:观察分式方程的两分母,得到分式方程的最简公分母为( 转化为整式方程求解.解答:解:X- 3 x+1方程两边都乘以最简公分母(x-3) (x+1)得:3(x+1)=5(x-3),解得:x=9,检验:当x=9时,(x-3) (x+1)=60和,原分式方程的解为x=9.点评:解分式方程的思想是转化即将分式方程转化为整式方程求解;同时要注意解出的x要代入最简公分母中进行检验.2111.(2011?攀枝花)解方程: .x2-4計2考点:解分式方程。专题:方程思想。分析:观察可得最简公分
12、母是(x+2) (x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(x+2) (x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2) (x-2)=12旳.原方程的解为:x=4.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.12.(2011?宁夏)解方程:-,.X_1:/考点:解分式方程。专题:计算题。分析: 观察可得最简公分母是(x-1) (x+2),方程两边乘最简公分母, 可以把分式方程转化为整式方程求解. 解答: 解: 原方程两边同乘(x-1
13、) (x+2),得x(x+2)-(x-1) (x+2)=3(x-1),展开、整理得-2x=-5,解得x=2.5,检验:当x=2.5时,(x-1) (x+2)老,原方程的解为:x=2.5.X-3) (x+1),在方程两边都乘以最简公分母后,点评:本题主要考查了分式方程都通过去分母转化成整式方程求解,检验是解分式方程必不可少的一步,许多同学 易漏掉这一重要步骤,难度适中.3K2- 1213.(2011?茂名)解分式方程: r+2考点:解分式方程。专题:计算题。分析:观察可得最简公分母是(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边乘以(x+2),得:3x2-
14、12=2x(x+2) , (1分)3x2-12=2x2+4x, (2分)x2-4x-12=0, (3分)(x+2) (x-6)=0, (4分)解得:xx-2,x2=6, (5分)检验:把x=-2代入(x+2)=0.则x=-2是原方程的增根,检验:把x=6代入(x+2)=8MD. x=6是原方程的根(7分).点评:本题考查了分式方程的解法,注:(1) 解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3114.(2011?昆明)解方程:=1.X_2 2_x考点:解分式方程。分析:观察可得最简公分母是(x-2),方程两边乘最简公分母,可以把分式方程转化
15、为整式方程求解.解答:解:方程的两边同乘(x-2),得3-1=x-2,解得x=4.检验:把x=4代入(x-2)=2和.原方程的解为:x=4.点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(2011?荷泽)(1)解方程:考点:解分式方程;解一元一次不等式组。分析:(1)观察方程可得最简公分母是:6x,两边同时乘最简公分母可把分式方程化为整式方程来解答;(2)先解得两个不等式的解集,再求公共部分.解答:(1)解:原方程两边同乘以6x,得3(x+1)=2x?(x+1)整理得2x2-x-3=0(3分)解得x=
16、-1或蛊措检验:把x=-1代入6x=-6MD,(2)解不等式组p- 2-1(14分)不等式组的解集为-1vxv2(6分)点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.16.(2011?大连)解方程:一X_22_s考点:解分式方程。专题:计算题。分析:观察两个分母可知,公分母为x-2,去分母,转化为整式方程求解,结果要检验.解答:解:去分母,得5+(x-2)=-(x-1),去括号,得5+x-2=-x+1,移项,得
17、x+x=1+2-5,合并,得2x=-2,化系数为1,得x=-1,检验:当x=-1时,x-20,原方程的解为x=-1.点评:本题考查了分式方程的解法.(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.(2011?常州)解分式方程考点:解分式方程;解一元一次不等式组。专题:计算题。分析:公分母为(x+2) (x-2),去分母,转化为整式方程求解,结果要检验;先分别解每一个不等式,再求解集的公共部分,即为不等式组解. 解答:解:去分母,得2(x-2)=3(x+2),去括号,得2x-4=3x+6,移项,得2x-3x=4+6,解得x=-10,检验
18、:当x=-10时,(x+2) (x-2)老,原方程的解为x=-10;不等式化为x-2v6x+18,解不等式组L5 (X-1)-64 (x+1)解得x-4,不等式化为5x-5-6绍x+4,解得x昌5,不等式组的解集为x昌5.点评:本题考查了分式方程,不等式组的解法.(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根解不等式组时,先解每一个不等式,再求解集的公共部分.18.(2011?巴中)解方程:考点:解分式方程。分析:观察可得最简公分母是2(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:去分母得,2x+2-(x-
19、3)=6x,x+5=6x,解得,x=1经检验:x=1是原方程的解.点评:本题考查了分式方程的解法.(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(2011?巴彦淖尔)(1)计算:|-2|+(卜匚+1)-(丄)-1+tan60J(2)解分式方程:-=2工工+1.x+1 |3x+3考点:解分式方程;实数的运算;零指数幕;负整数指数幕;特殊角的三角函数值。分析:(1)根据绝对值、零指数幕、负指数幕和特殊角的三角函数进行计算即可;(1)观察可得最简公分母是(3x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:(1)
20、原式=2+1-3+二=(2)方程两边同时乘以3(x+1)得3x=2x+3(x+1),x=-1.5,检验:把x=-1.5代入(3x+3)=-1.5旳.x=-1.5是原方程的解.点评:本题考查了实数的混合运算以及分式方程的解法,(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.岂 3220.(2010?遵义)解方程: -一I -K一 2 - X考点:解分式方程。专题:计算题。分析:观察可得2-x=-(x-2),所以可确定方程最简公分母为:(x-2),然后去分母将分式方程化成整式方程求解.注意检验.解答:解:方程两边同乘以(x-2),得:x-3+(
21、x-2)=-3,解得x=1,2i+2工+1检验:x=1时,x-2和,x=1是原分式方程的解.点评:(1)解分式方程的基本思想是 转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.21. (2010?重庆)解方程: 一+二=1M 1 X考点:解分式方程。专题:计算题。分析:本题考查解分式方程的能力,观察方程可得最简公分母是:x(x-1),两边同时乘最简公分母可把分式方程化为整式方程来解答.解答:解:方程两边同乘x(x-1),得x2+x-仁x(x-1) (2分)整理,得2x=1(4分)解得x= (5分)2经检验,X=丄是原方程的解,所以
22、原方程的解是x=. (6分)点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.(2010?孝感)解方程:三 :1二.x-s考点:解分式方程。专题:计算题。分析:本题考查解分式方程的能力,因为3-x=-(x-3),所以可得方程最简公分母为(x-3),方程两边同乘(x-3)将分式方程转化为整式方程求解,要注意检验.解答:解:方程两边同乘(x-3),得:2-x-1=x-3,整理解得:x=2,经检验:x=2是原方程的解.点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程有常数
23、项的不要漏乘常数项.23.(2010?西宁)解分式方程:_- -T-考点:解分式方程。专题:计算题。分析:本题考查解分式方程的能力,观察方程可得最简公分母是: 程化为整式方程来解答.解答:解:方程两边同乘以2(3x-1),得3(6x-2)-2=4(2分)18x-6-2=4,18x=12,x(5分).2(3x-1),两边同时乘最简公分母可把分式方2(3x-1) :2(3x-1)用,x=-是原方程的根.原方程的解为x=_. (7分)3点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.(2010?恩施州)解方程: 色一上!一 二1考点:解
24、分式方程。专题:计算题。分析:方程两边都乘以最简公分母(X-4),化为整式方程求解即可.解答:解:方程两边同乘以x-4,得:(3-x)-1=x-4(2分)解得:x=3(6分)经检验:当x=3时,x-4=-1旳,所以x=3是原方程的解.(8分)点评:(1)解分式方程的基本思想是转化思想”把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.225.(2009?乌鲁木齐)解方程: -x_2考点:解分式方程。专题:计算题。分析:两个分母分别为:x-2和2-x,它们互为相反数,所以最简公分母为:x-2,方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.解
25、答:解:方程两边都乘x-2,得3-(x-3)=x-2,解得x=4.检验:x=4时,x-2和,原方程的解是x=4.点评:本题考查分式方程的求解当两个分母互为相反数时,最简公分母应该为其中的一个,解分式方程一定注意 要验根.x_2x+2(K+2)(K_2)方程两边同乘(x+2) (x-2), 得:(x-2)2-8=(x+2) (x-2), 解这个方程得:x=0, 检验:将x=0代入(x+2) (x-2)=-4老, x=0是原方程的解.点评:(1)解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.x - 23x+2I- F26. (2009?聊城)解方程:x-3考点:解分式方程。 专题:计算题。分析:观察可得因为: 整理为整式方程求解.4-x2=-(x2-4)=-(x+2) (x-2),所以可得方程最简公分母为(x+2) (x-2),去分母=1解答:解:方程变形整理得:27.(2009?南昌)解方程:考点:解分式方程。专题:计算题。分析:本题考查解分式方程的能力,因为6x-2=2(3x-1),且1-3x=-(3x-1),所以可确定方程最简公分母为2(3x-1),然后方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年首期款全付房产买卖合同书3篇
- 二零二五版个人信用重建借款委托担保合同3篇
- 二零二五版包装行业绿色认证与推广合同3篇
- 二零二五年陵园墓地购置与家族纪念馆建设合同3篇
- 二零二五版知识产权保护技术服务合同泄密责任细则3篇
- 二零二五年度餐饮企业食品安全追溯平台建设合同3篇
- 二零二五年度食品供应与餐饮服务合同2篇
- 二零二五年防火门制造与施工安装一体化合同模板3篇
- 2025年度影视基地场地租赁及拍摄制作合同范本3篇
- 2025年复合材料堆放场地租赁及环保处理合同3篇
- 2014新PEP小学英语六年级上册-Unit5-What-does-he-do复习课件
- 建筑材料供应链管理服务合同
- 孩子改名字父母一方委托书
- 2024-2025学年人教版初中物理九年级全一册《电与磁》单元测试卷(原卷版)
- 江苏单招英语考纲词汇
- 2024年事业单位财务工作计划例文(6篇)
- 2024年工程咨询服务承诺书
- 青桔单车保险合同条例
- 车辆使用不过户免责协议书范文范本
- 《狮子王》电影赏析
- 2023-2024学年天津市部分区九年级(上)期末物理试卷
评论
0/150
提交评论