初一数学上册复习教学知识点归纳总结_第1页
初一数学上册复习教学知识点归纳总结_第2页
初一数学上册复习教学知识点归纳总结_第3页
初一数学上册复习教学知识点归纳总结_第4页
初一数学上册复习教学知识点归纳总结_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一数学上册复习教学知识点归纳总结 一:有理数概念、定义:1、大于0的数叫做正数。2、在正数前面加上负号“-”的数叫做负数。3、整数和分数统称为有理数。4、人们通常用一条直线上的点表示数,这条直线叫做数轴。5、在直线上任取一个点表示数0,这个点叫做原点。6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大

2、的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。(3)一个数同0相加,仍得这个数。11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。13、有理数减法法则减去一个数,等于加上这个数的相反数。14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。15、有理数中仍然有:乘积是1的两个数互为倒数。16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。18、 一般地,一个

3、数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an 中,a叫做底数,n叫做指数22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大

4、括号依次进行。24、把一个大于10数表示成a10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字二:整式的加减概念、定义:1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。2、单项式中的数字因数叫做这个单项式的系数。3、 一个单项式中,所有字母的指数的和叫做这个单项式的次数。4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项(constantlyterm)。5、多项

5、式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。三:一元一次方程概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式方程。2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做

6、一元一次方程。3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。7、应用:行程问题:s=vt 工程问题:工作总量=工作效率时间盈亏问题:利润=售价成本 利率=利润成本100售价=标价折扣数10 储蓄利润问题:利息=本金利率时间本息和=本金+利息三:图形初步认识概念、定义:1、 我们把实物中抽象的各种图形统称为几何图形。2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等

7、)的各部分不都在同一平面内,它们是立体图形。3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5、几何体简称为体。6、包围着体的是面,面有平的面和曲的面两种。7、面与面相交的地方形成线,线和线相交的地方是点。8、点动成面,面动成线,线动成体。9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。11、点M把线段A

8、B分成相等的两条线段AM和MB,点M叫做线段AB的中点。12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)13、连接两点间的线段的长度,叫做这两点的距离。14、角也是一种基本的几何图形。15、把一个周角360等分,每一份就是1度的角,记作1;把一度的角60等分,每一份叫做1分的角,记作1;把1分的角60等分,每一份叫做1秒的角,记作1。16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。17、如果两个角的和等于90(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。18、如果两个角的和

9、等于180(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19、等角的补角相等,等角的余角相等。赞同初一数学(下)应知应会的知识点 二元一次方程组1二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).3二元一次方程组的解法:(1)代入消元法;(2)加减消元法;4一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之

10、则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1不等式:用不等号“”“”“”“”“”,把两个代数式连接起来的式子叫不等式.2不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3不等式的解集:能使不等式成立的未知数的值,叫做这个

11、不等式的解;不等式所有解的集合,叫做这个不等式的解集.4一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0 ,(a0).5一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab0 或 ;ab0 或 ; a=0或b=0;ab=0 a=m .7一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做

12、这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8一元一次不等式组的解集的四种类型:设 ab9几个重要的判断:整式的乘除 1同底数幂的乘法:aman=am+n ,底数不变,指数相加. 2幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.3单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5多项式的乘法:(a+b)(c

13、+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式: (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,7配方:(1)若二次三项式x2+px+q是完全平方式,则有关系式: (2)二次三项式ax2+bx+c经过配方,总可以变为

14、a(x-h)2+k的形式,利用a(x-h)2+k可以判断ax2+bx+c值的符号; 当x=h时,可求出ax2+bx+c的最大(或最小)值k.(3)注意: .8同底数幂的除法:aman=am-n ,底数不变,指数相减.9零指数与负指数公式: (1)a0=1 (a0); a-n= ,(a0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.0110-5 .10单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.12多项式除以多

15、项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线1. 角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.3等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相5补角重要性质:同角或等角的补角相等.6余角重要性质:同角或等角的余角相等.7对顶角性质定理:对顶角相等.8两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直9三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行10平

16、行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(2)若内错角相等,两条直线平行;(3)若同旁内角互补,两条直线平行.11平行线性质定理:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补一 基本概念: 直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二 定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三 公式:直角=90,平角=180,周角=360,1=60,1=60.四 常识:1定义有双向性,定理没有.2直线不能延长;射线不能正向延长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论