




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高频考点(14) 异面直线所成角和线面及面面平行的证明知识点一.异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的,即异面直线所成的角的范围是0°90°准确选定角的顶点,平移直线构造三角形是解题的重要环节常见方法如下: 本节课用到的定理:1余弦定理:在ABC中,有a=b+c-2bccosA,b=a+c-2accosB,222222c2=a2+b2-2abcosCb2+c2-a2a2+c2-b2a2+b2-c22余弦定理的推论:cosA=,cosB=,cosC=2bc2ab2ac一、抓异面直线(或空间图形)上的已知点和特殊点过一条异面直线上的
2、已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标;或抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 1在正方体ABCD-A1B1C1D1中,E是AB的中点, (1)求BA1与CC1夹角的度数. (2)求BA1与CB1夹角的度数 (3)求A1E与CB1夹角的余弦值AA1DD1(4)若E为C1D1的中点,则异面直线AE与BC所成角的余弦值为等于解:(1)由BB'/CC',可知B'BA'等于异面直线BA'与CC'的夹角,所以异面直线BA'与CC'的夹角为45(2)连结
3、CD,BD,则BA'/ CD,BCD等于异面直线BA'与CB的夹角,由CBD 为等边三角形,B/CD/=60O ,BA'与CB/的夹角为60O/(3)连结AD,DE,则AD/ CB,DAE等于异面直线AE与CB的夹角。/A/D2+A/E2-DE2设AA=2,AE=1,AE=DE=,AD=22,在三角形DAE中,cosDAE=, /(4)取A1B1的中点F,AEF为所求角,设棱长为2,则AE=3,AF=EF=2,AE2+EF2-AF22cosAEF=.2AEEF32长方体ABCD-A1B1C1D1中,若AB=BC=3,AA1=4A1求异面直线A1B和AD1所成角的余弦值求
4、异面直线B1D与DD1A高频考点(14) 异面直线所成角和线面及面面平行的证明BC1所成角的余弦值。解因为CD1A1B,所以AD1C即为A1B与AD1所成的角 在AD1C中,AD1=CD1=5,AC=32cosAD1C=16 25解:如图连结B1C交BC1于0,过0点作OEDB1,则BOE为所求的异面直线DB1与BC1所成的角。连结EB,由已知有B1BC1=5,BE=,cosBOE= 2170练1:如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角是_解:连B1G,则A1EB1G,知B1G F就是异面
5、直线A1E与GF所成的角在D1B1GF中,由余弦定理,得C1B1A1B1G2+GF2-B1F2222= cosB1GF0,2B1GGF 故B1G F90°,应选(D)练2.已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求 异面直线BD与AB1所成角的余弦值;BEDAGCFDC解:连BD,AB1,B1D1,AD1, BD/B1D1,AB1=AD1, 异面直线BD与AB1所成角为AB1D1,记AB1D1=,A1AB12+B1D12-AD12cos=2AB1B1D1D1C1B13 如图空间四边形ABCD中,四条棱AB=BC=CD=DA=AC=BD=2,E为AD的中点,F为BC中,(1)求直线AB和CE 所成角的余弦值。 (2)求直线AF和CE 所成角的余弦值。 解:(1)取BD中点M,连结MC,ME,则ME/AB,CEM等于异面直线AB和CE的夹角,取ME中点O,连结CO,CM=CE,OCME111AB=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网广告投放精准算法效果评估与品牌形象塑造策略研究
- 2023年磷酸氧钛钾晶体(KTP)相关项目实施方案
- 2025年艺术市场数字化交易平台的虚拟现实艺术体验研究报告
- 2025绿色建筑推广实施方案:绿色建筑评价体系研究报告
- 2023年辽宁省安全工程师安全生产:常见的触电事故是怎样发生的模拟试题
- 广东省深圳市2025-2026学年七年级入学考试模拟英语试卷(无答案)
- 2025版粮食直销居间代理合同
- 二零二五年度二手房销售数据统计分析合同
- 2025年绿色生产车间承包合作协议样本
- 2025桉树种植基地租赁与木材采伐管理合同
- 加油站操作员技师理论试题题库及答案
- 2021众海H6320火灾报警控制器(联动型)
- 南京一中实验学校语文新初一分班试卷含答案
- 九型人格完整版课件
- 六年级上册语文第4课《花之歌》同步练习(含答案)
- 社会工作者考试题库及答案
- 2023年江西美术出版社七、八、九年级美术基础知识测试试卷
- 2022年北海市铁山港区审计局审计业务人员招聘笔试试题及答案
- 动物协检员聘用合同协议书范本
- 连续下降最后进近CDFA培训
- 施工现场每周安全质量检查记录
评论
0/150
提交评论