版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、光伏电站系统电缆选型课题研讨报告 编制人员: XXXX日 期: XXXX 目 录一 概述3二 范围4三 参考标准4四 光伏电缆51 应用52 结构53、印字64、载流量65、电性能7五 动力电缆选型91、电缆的型号组成与顺序93、电缆型号选型注意事项104、电缆截面估算方法 先估算负荷电流115、电压降的估算136 、根据电流来选截面15六 结束语18 一 概述现代经济快速发展,带来居民生活水平的提高,同时也带来了环境与生态,尤其对不可再生能源是很大的挑战。因此,人们迫切需要一种清洁能源代替现有不可再生能源,为此,太阳能诞生,解决了环境与生态问题,又解决了不可再生能源枯竭制约了国民经济的发展,
2、一举二得。太阳能可利用总量丰富,在所有可再生能源中的比重超过90%,因此是可再生能源利用中的主要课题,而太阳能实际已经在日常生活与生产中被普遍利用。太阳能的人工利用形式多种多样,基本可以分为以下几类:1)直接利用于照明2)太阳能直接转化为化学能,如光合作用。3)太阳能转换为热能如热水器4)太阳能转换为电能,目前转换为电能有两种,一种是光热,二是光伏。不论是那种电能的转换,都离不开电气设备,尤其是电缆在电站中的大量应用,电缆选用是否得当直接关系到了电网运行的安全性,经济性等,所以光伏电站中电缆的选用显得尤为重要,电缆的选择主要考虑到以下因素:1) 电缆的绝缘性能;2) 电缆的耐热阻燃性能;3)
3、电缆的防潮,防光;4) 电缆的敷设方式;5) 电缆芯的类型(铜芯,铝芯);6) 电缆的大小规格。本论文针对于光伏电站直流电缆与交流动力电缆的选用注意事项与要点逐一说明,由于作者水平有限,错误之处还望读者予以改正。二 范围2.1 本论文适用于光伏专用直流电缆与电压为6/6kV, 8.7/10kV及0.6/1.0kV中低压等级铜芯电力电缆的经济选择。电缆类型为铜芯聚氯乙烯绝缘聚氯乙烯护套电力电缆(VV型),铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆(VV22型),以及交联铜芯聚氯乙烯绝缘聚氯乙烯护套电力电缆(YJV型),交联铜芯聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆(YJV22型)。电缆芯数包
4、括:根据产品目录有等截面的二芯、三芯、四芯及五芯,非等截面的四芯及五芯。2.2 按照IEC 287-3-2/1995国际标准,导体截面经济选择只计及发热损耗,不考虑电压有关的损耗, 也不包括诸如维修等因素。三 参考标准国际电工委员会标准IEC 287-3-2/1995电力电缆截面的经济最佳化。国家标准 GB/T16895.15-2002 IEC 60364-5-523:1999 建筑物电气装置电气设备的选择和安装布线系统载流量GB 50217-94电力工程电缆设计规范。 四 光伏电缆1 应用广泛应用于室内外太阳能装置设备电气安装用线。特性:低烟无卤、优良的耐寒、耐紫外线、耐臭氧和耐气候性。阻燃
5、、耐切痕、耐穿透。线缆保护级别级。环境温度:-40+90;导体最高温度:120(允许5s内短路温度200);额定电压:AC0.6/1kV DC1.8kV设计寿命:25年2 结构导体:镀锡铜线 2.5、4、 6、10、16mm2 PV1-F 18、16、14、12、10、8、6、4、2mm2 PV wire绝缘:低烟无卤材料 厚度0.5mm,并符合客户给定的限值。护套:低烟无卤材料 厚度0.5mm采用150无卤阻燃光伏电缆辐照绝缘料(因为最高温度为120,必须高于它),是以无卤无毒改性聚烯烃树脂为主要原料,加入无卤无毒阻燃剂、热稳定剂、消烟剂、防霉剂等助剂,不含卤素(欧洲特别强调)、重金属、磷元
6、素。且符合ROHS,浸水后绝缘电阻变化小。 下表为典型结构:截面mm2导电线芯绝缘护套根数/直径mm标称厚度mm外径mm标称厚度mm外径mm2.551/0.2540.783.601.105.804.056/0.3000.806.084/0.3000.904.901.207.3010.084/0.4000.905.901.208.3016.0126/0.4001.007.001.309.603、 印字内容为“ 2Pfg 1169 PV1-F 14.0mm2 天津六九电缆有限公司”,两组印字间距(前一个字符串最后一个字符至后一个字符串第一个字符之间距离)不大于550mm。4
7、、 载流量4.0mm2电缆载流量:(环境温度:60,导体最高温度:120) 单根电缆对空气:55A; 单根电缆在物体表面:52A; 多根电缆整体在物体表面:44A。不同环境温度下载流量的温度转化因数见下表:不同环境温度下载流量的变化系数环境温度()60708090100110变化系数1.000.910.820.710.580.415 、 电性能5.1. 直流电阻成品电缆20时导电线芯直流电阻不大于5.09/km。5.2 浸水电压试验 成品电缆(20m)在(205)水中浸入时间1h后经5min电压试验(交流6.5kV或直流15kV)不击穿。5.3 长期耐直流电压样品长5m,放入(852)的含3%
8、氯化钠(NaCl)的蒸馏水中(2402)h,两端露出水面30cm。线芯与水间加直流0.9kV电压(导电线芯接正极,水接负极)。取出试样后进行浸水电压试验,试验电压为交流1kV,要求不击穿。5.4 绝缘电阻成品电缆20时绝缘电阻不小于1014cm,成品电缆90时绝缘电阻不小于1011cm。55 护套表面电阻成品电缆护套表面电阻应不小于109。6、其他性能6.1 高温压力试验(GB/T 2951.31-2008)温度(1403),时间240min, k=0.6,压痕深度不超过绝缘与护套总厚度的50%。并进行AC6.5kV、5min电压试验,要求不击穿。6.2 湿热试验样品在温度90、相对湿度85%
9、的环境下放置1000h,冷却至室温后与试验前相比,抗拉强度变化率-30%,断裂伸长率的变化率-30%。6.3 耐酸碱溶液试验(GB/T 2951.21-2008)两组样品分别浸于浓度为45g/L的草酸溶液和浓度为40g/L的氢氧化钠溶液中,温度为23,时间168h,与浸溶液前相比,抗拉强度变化率30%,断裂伸长率100%。6.4 相容性试验电缆整体经724h,(1352)老化后,绝缘老化前后抗拉强度变化率30%,断裂伸长率变化率30%;护套老化前后抗拉强度变化率-30%,断裂伸长率变化率30%。6.5 低温冲击试验(GB/T 2951.14-2008中的8.5)冷却温度-40,时间16h,落锤
10、质量1000g,撞击块质量200g,下落高度100mm,表面不应有目力可见裂纹。6.6 低温弯曲试验(GB/T 2951.14-2008中的8.2) 冷却温度(-402),时间16h,试棒直径为电缆外径的45倍,绕34圈,试验后护套表面不应有目力可见裂纹。6.7 耐臭氧试验 试样长度20cm,干燥器皿内放置16h。弯曲试验所用试棒直径为电缆外径的(20.1)倍,试验箱:温度(402),相对湿度(555)%,臭氧浓度(20050)10-6%,空气流量:0.20.5倍试验箱容积/min。样品放置试验箱72h,试验后护套表面不应有目力可见裂纹。6.8 耐气候性/紫外线试验 每个周期:洒水18min,
11、氙灯干燥102min,温度(653),相对湿度65%,波长300400nm条件下的最小功率:(602)W/m2。持续720h后进行室温下弯曲试验。试棒直径为电缆外径的45倍,试验后护套表面不应有目力可见裂纹。6.9 动态穿透试验室温条件下,切割速度1N/s,切割试验数:4次,每次继续试验样品须向前挪动25mm,并顺时针旋转90后进行。记录弹簧钢针与铜线接触瞬间的穿透力F,所得均值150Dn1/2 N(4mm2截面Dn=2.5mm) 6.10 耐凹痕取3段样品,每段样品上相隔25mm,并旋转90处共制作4个凹痕,凹痕深度0.05mm且与铜导线相互垂直。3段样品分别置于-15、室温、+85试验箱内
12、3h,然后在各自相应的试验箱内卷绕于芯轴上,芯轴直径为(30.3)倍电缆最小外径。每个样品至少一个刻痕位于外侧。进行AC0.3kV浸水电压试验不击穿。6.11 护套热收缩试验(GB/T 2951.13-2008中的11) 样品切取长度L1=300mm,在120烘箱内放置1h后取出至室温冷却,重复5次这样的冷热循环,最后冷却至室温,要求样品热收缩率2%。6.12 垂直燃烧试验成品电缆在(602)放置4h后,进行GB/T 18380.12-2008规定的垂直燃烧试验。6.13 卤素含量试验 PH及导电率样品置放:16h,温度(2125),湿度(4555)%。试样二个,各(10005)mg,碎至0.
13、1mg以下的微粒。空气流量(0.0157D2)lh-110%,燃烧舟与烧炉加热有效区边缘之间距300mm,燃烧舟处的温度须935,离燃烧舟300m处(顺空气流动方向)温度须900。试验样品所产生气体通过含有450ml(PH值6.51.0;导电率0.5S/mm)蒸馏水的气体洗瓶收集,试验周期:30min。要求:PH4.3;导电率10S/mm。 Cl及Br含量 样品置放:16h,温度(2125),湿度(4555)%。试样二个,各(5001000)mg,碎至0.1mg。空气流量(0.0157D2)lh-110%,样品被均匀加热40min至(80010),并保持20min。试验样品所产生气体通过含有2
14、20ml/个 0.1M氢氧化钠溶液的气体洗瓶吸取;将两个气体洗瓶的液体注入量瓶,同时应用蒸馏水清洗气体洗瓶及其附件并注入量瓶加至1000ml,冷却至室温后,用吸管将200ml被测溶液滴入量瓶中,加入浓硝酸4ml,20ml 0.1M硝酸银,3ml硝基苯,然后搅拌至白色絮状物沉积;加入40%硫酸铵水溶液及几滴硝酸溶液予以完全混合,用磁性搅拌器搅拌,加入硫氢酸铵滴定溶液。要求:两个样品测试值的均值:HCL0.5%;HBr0.5%;每个样品测试值两个样品测试值的均值10%。 F含量2530mg样品材料放入1L氧气容器中,滴23滴烷醇,加入5ml 0.5M氢氧化钠溶液。使样块燃尽,将残留物通过轻微的冲洗
15、倒入50ml的量杯中。将5ml缓冲液混合于样品溶液及冲洗液中,并达到标线。绘制校准曲线,侧得样品溶液的氟浓度,通过计算获得样品中的氟百分比含量。要求:0.1%。6.14 绝缘、护套材料机械性能老化前绝缘抗拉强度6.5N/mm2,断裂伸长率125%,护套抗拉强度8.0N/mm2,断裂伸长率125%。(1502)、724h老化后,绝缘及护套老化前后抗拉强度变化率-30%,绝缘及护套老化前后断裂伸长率变化率-30%。6.15 热延伸试验 20N/cm2负重下,样品经(2003)、15min的热延伸试验后,绝缘及护套伸长率的中间值应不大于100%,试件从烘箱内取出冷却后标记线间距离的增加量的中间值对试
16、件放入烘箱前该距离的百分比应不大于25%。6.16 热寿命 根据EN 60216-1、EN60216-2阿列纽斯曲线进行,温度指数为120。时间5000h。绝缘及护套断裂伸长率保留率:50%。之后进行室温下弯曲试验。试棒直径为电缆外径的2倍,试验后护套表面不应有目力可见裂纹。要求寿命:25年。五 动力电缆选型1、电缆的型号组成与顺序1:类别、用途2:导体3:绝缘4:内护层5:结构特征6:外护层或派生7:使用特征1-5项和第7项用拼音字母表示,高分子材料用英文名的第位字母表示,每项可以是 1-2个字母;第6项是1-3个数字。型号中的省略原则:电线电缆产品中铜是主要使用的导体材料,故铜芯代号T省写
17、,但裸电线及裸导体制品除外。裸电线及裸导体制品类、电力电缆类、电磁线类产品不表明大类代号,电气装备用电线电缆类和通信电缆类也不列明,但列明小类或系列代号等。 第7项是各种特殊使用场合或附加特殊使用要求的标记,在“-”后以拼音字母标记。有时为了突出该项,把此项写到最前面。如ZR-(阻燃)、NH-(耐火)、WDZ-(低烟无卤、企业标准)、-TH(湿热地区用)、FY-(防白蚁、企业标准)等。数字标记 铠装层 外被层或外护套0 无 -1 联锁铠装 纤维外被2 双层钢带 聚氯乙烯外套3 细圆钢丝 聚乙烯外套4 粗圆钢丝5 皱纹(轧纹)钢带6 双铝(或铝合金)带8 铜丝编织9 钢丝编织2、电缆的型号表示含
18、义1、用途代码不标为电力电缆,K为控制缆,P为信号缆;2、绝缘代码Z油浸纸,X橡胶,V聚氯乙烯,YJ交联聚乙烯3、导体材料代码不标为铜,L为铝;4、内护层代码Q铅包,L铝包,H橡套,V聚氯乙烯护套5、派生代码D不滴流,P干绝缘;6、外护层代码7、特殊产品代码TH湿热带,TA干热带;8、额定电压单位KV3、电缆型号选型注意事项1、SYV:实心聚乙烯绝缘射频同轴电缆2、SYWV(Y):物理发泡聚乙绝缘有线电视系统电缆,视频(射频)同轴电缆(SYV、 SYWV、SYFV)适用于闭路监控及有线电视工程SYWV(Y)、SYKV 有线电视、宽带网专用电缆 结构:(同轴电缆)单根无氧圆铜线+物理 发泡聚乙烯
19、(绝缘)+(锡丝+铝)+聚氯乙烯(聚乙烯)3、信号控制电缆(RVV护套线、RVVP屏蔽线)适用于楼宇对讲、防盗报警、消防、自动抄表等工程RVVP:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆 电压300V/300V 2-24芯用途:仪器、仪表、对讲、监控、控制安装4、RG:物理发泡聚乙烯绝缘接入网电缆 用于同轴光纤混合网(HFC)中传输数据模拟信号5、KVVP:聚氯乙烯护套编织屏蔽电缆 用途:电器、仪表、配电装置的信号传输、控制、测量6、RVV(227IEC52/53) 聚氯乙烯绝缘软电缆 用途:家用电器、小型电动工具、仪表及动 力照明7、AVVR 聚氯乙烯护套安装用软电缆8、SBVV HYA 数据
20、通信电缆(室内、外)用于电话通信及无线电设备的连接以及电话配线网的 分线盒接线用9、RV、RVP 聚氯乙烯绝缘电缆10、RVS、RVB 适用于家用电器、小型电动工具、仪器、仪表及动力照明连接用电缆11、BV、BVR 聚氯乙烯绝缘电缆 用途:适用于电器仪表设备及动力照明固定布线用12、RIB 音箱连接线(发烧线)13、KVV 聚氯乙烯绝缘控制电缆 用途:电器、仪表、配电装置信号传输、控制、测量14、SFTP 双绞线 传输电话、数据及信息15、UL2464 电脑连接16、VGA 显示器线17、SYV 同轴电缆 无线通讯、广播、监控系统工程和有关电子设备中传输射频信号(含综合用同轴电缆)18、SDF
21、AVP、SDFAVVP、SYFPY 同轴电缆,电梯专用19、JVPV、JVPVP、JVVP 铜芯聚氯乙烯绝缘及护套铜丝编织电子计算机控制电缆4、电缆截面估算方法先估算负荷电流4.1 用途 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。一般有公式可供计算。由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。4.2 口诀低压380/220伏系统每千瓦的电流,安。千瓦、电流,如何计算?电力加倍,电热加半。 单相千瓦,4.5安。 单相380,电流两安半。 4.3 说明口诀是以380/2
22、20伏三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。 这两句口诀中,电力专指电动机。在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。这电流也称电动机的额定电流。【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。电热是指用电阻加热的电阻炉等。三相380伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5)就是电流,安。【例1】 3千瓦电加热器按“电热加半”算得电流为4.5安。【例2】 1
23、5千瓦电阻炉按“电热加半”算得电流为23安。这句口诀不专指电热,对于照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。只要三相大体平衡也可这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。【例1】 12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。【例2】 30千伏安的整流器按“电热加半”算得电流为45安(指380伏三相交流侧)。【例3】 320千伏安的配电变压器按“电热加半”算得电流为4
24、80安(指380/220伏低压 侧)。【例4】 100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。计算时,只要“将千瓦数乘4.5”就是电流,安。同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。【例1】 500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相千瓦、4.5安”算得电流为2.3安。【例2】 1
25、000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。对于电压更低的单相,口诀中没有提到。可以取220伏为标准,看电压降低多少,电流就反过来增大多少。比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6*4.5=27安。比如36伏、60瓦的行灯每只电流为0.06*27=1.6安,5只便共有8安。在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备(实际是接在两相上)。这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”。它也包括以千伏安为单位的380伏单相设备。计算时,只要“
26、将千瓦或千伏安数乘2.5”就是电流,安。【例1】 32千瓦钼丝电阻炉接单相380伏,按“电流两安半”算得电流为80安。【例2】 2千伏安的行灯变压器,初级接单相380伏,按“电流两安半”算得电流为5安。【例3】 21千伏安的交流电焊变压器,初级接单相380伏,按“电流两安半”算得电流为53安。估算出负荷的电流后在根据电流选出相应导线的截面,选导线截面时有几个方面要考虑到一是导线的机械强度二是导线的电流密度(安全截流量),三是允许电压降5、电压降的估算5. 用途根据线路上的负荷矩,估算供电线路上的电压损失,检查线路的供电质量。5. 口诀提出一个估算电压损失的基准数据,通过一些简单的计算,可估出供
27、电线路上的电压损失。压损根据“千瓦米”,2.5铝线201。截面增大荷矩大,电压降低平方低。三相四线6倍计,铜线乘上1.7。 感抗负荷压损高,10下截面影响小,若以力率0.8计,10上增加0.2至1。 5.说明电压损失计算与较多的因素有关,计算较复杂。估算时,线路已经根据负荷情况选定了导线及截面,即有关条件已基本具备。电压损失是按“对额定电压损失百分之几”来衡量的。口诀主要列出估算电压损失的最基本的数据,多少“负荷矩”电压损失将为1%。当负荷矩较大时,电压损失也就相应增大。因些,首先应算出这线路的负荷矩。所谓负荷矩就是负荷(千瓦)乘上线路长度(线路长度是指导线敷设长度“米”,即导线走过的路径,不
28、论线路的导线根数。),单位就是“千瓦米”。对于放射式线路,负荷矩的计算很简单。如下图1,负荷矩便是20*30=600千瓦米。但如图2的树干式线路,便麻烦些。对于其中5千瓦设备安装位置的负荷矩应这样算:从线路供电点开始,根据线路分支的情况把它分成三段。在线路的每一段,三个负荷(10、8、5千瓦)都通过,因此负荷矩为:第一段:10*(10+8+5)=230千瓦米第二段:5*(8+5)=65千瓦米第三段:10*5=50千瓦米至5千瓦设备处的总负荷矩为:230+65+50=345千瓦米下面对口诀进行说明:首先说明计算电压损失的最基本的根据是负荷矩:千瓦米接着提出一个基准数据:2 .5平方毫米的铝线,单
29、相220伏,负荷为电阻性(力率为1),每20“千瓦米”负荷矩电压损失为1%。这就是口诀中的“2 .5铝线201”。在电压损失1%的基准下,截面大的,负荷矩也可大些,按正比关系变化。比如10平方毫米的铝线,截面为2 .5平方毫米的4倍,则20*4=80千瓦米,即这种导线负荷矩为80千瓦米,电压损失才1%。其余截面照些类推。当电压不是220伏而是其它数值时,例如36伏,则显灰出36伏相当于220伏的1/6。此时,这种线路电压损失为1%的负荷矩不是20千瓦米,而应按1/6的平方即1/36来降低,这就是20*(1/36)=0 .55千瓦米。即是说,36伏时,每0 .55千瓦米(即每550瓦米),电压损
30、失降低1%。“电压降低平方低”不单适用于额定电压更低的情况,也可适用于额定电压更高的情况。这时却要按平方升高了。例如单相380伏,由于电压380伏为220伏的1 .7倍,因此电压损失1%的负荷矩应为20*1 .7的平方=58千瓦米。从以上可以看出:口诀“截面增大荷矩大,电压降低平方低”。都是对照基准数据“2 .5铝线201”而言的。【例1】 一条220伏照明支路,用2 .5平方毫米铝线,负荷矩为76千瓦米。由于76是20的3 .8倍(76/20=3 .8),因此电压损失为3 .8%。【例2】 一条4平方毫米铝线敷设的40米长的线路,供给220伏1千瓦的单相电炉2只,估算电压损失是:先算负荷矩2
31、*40=80千瓦米。再算4平方毫米铝线电压损失1%的负荷矩,根据“截面增大负荷矩大”的原则,4和2 .5比较,截面增大为1 .6倍(4/2 .5=1 .6),因此负荷矩增为20*1 .6=32千瓦米(这是电压损失1%的数据)。最后计算80/32=2 .5,即这条线路电压损失为2 .5%。当线路不是单相而是三相四线时,(这三相四线一般要求三相负荷是较平衡的。它的电压是和单相相对应的。如果单相为220伏,对应的三相便是380伏,即380/220伏。)同样是2 .5平方毫米的铝线,电压损失1%的负荷矩是中基准数据的6倍,即20*6=120千瓦米。至于截面或电压变化,这负荷矩的数值,也要相应变化。当导
32、线不是铝线而是铜线时,则应将铝线的负荷矩数据乘上1 .7,如“2 .5铝线201”改为同截面的铜线时,负荷矩则改为20*1 .7=34千瓦米,电压损失才1%。【例3】 前面举例的照明支路,若是铜线,则76/34=2 .2,即电压损失为2 .2%。对电炉供电的那条线路,若是铜线,则80/(32*1 .7)=1 .5,电压损失为1 .5%。【例4】 一条50平方毫米铝线敷设的380伏三相线路,长30米,供给一台60千瓦的三相电炉。电压损失估算是:先算负荷矩:60*30=1800千瓦米。再算50平方毫米铝线在380伏三相的情况下电压损失1%的负荷矩:根据“截面增大荷矩大”,由于50是2 .5的20倍
33、,因此应乘20,再根据“三相四线6倍计”,又要乘6,因此,负荷矩增大为20*20*6=2400千瓦米。最后1800/2400=0 .75,即电压损失为0 .75%。以上都是针对电阻性负荷而言。对于感抗性负荷(如电动机),计算方法比上面的更复杂。但口诀首先指出:同样的负荷矩千瓦米,感抗性负荷电压损失比电阻性的要高一些。它与截面大小及导线敷设之间的距离有关。对于10平方毫米及以下的导线则影响较小,可以不增高。对于截面10平方毫米以上的线路可以这样估算:先按或算出电压损失,再“增加0 .2至1”,这是指增加0 .2至1倍,即再乘1 .2至2。这可根据截面大小来定,截面大的乘大些。例如70平方毫米的可
34、乘1 .6,150平方毫米可乘2。以上是指线路架空或支架明敷的情况。对于电缆或穿管线路,由于线路距离很小面影响不大,可仍按、的规定估算,不必增大或仅对大截面的导线略为增大(在0 .2以内)。【例5】 图1中若20千瓦是380伏三相电动机,线路为3*16铝线支架明敷,则电压损失估算为: 已知负荷矩为600千瓦米。计算截面16平方毫米铝线380伏三相时,电压损失1%的负荷矩:由于16是2 .5的6 .4倍,三相负荷矩又是单相的6倍,因此负荷矩增为:20*6 .4*6=768千瓦米 600/768=0 .8即估算的电压损失为0 .8%。但现在是电动机负荷,而且导线截面在10以上,因此应增加一些。根据
35、截面情况,考虑1 .2,估算为0 .8*1 .2=0 .96,可以认为电压损失约1%。以上就是电压损失的估算方法。最后再就有关这方面的问题谈几点:(一) 线路上电压损失大到多少质量就不好?一般以78%为原则。(较严格的说法是:电压损失以用电设备的额定电压为准(如380/220伏),允许低于这额定电压的5%(照明为2 .5%)。但是配电变压器低压母线端的电压规定又比额定电压高5%(400/230伏),因此从变压器开始至用电设备的整个线路中,理论上共可损失5%+5%=10%,但通常却只允许78%。这是因为还要扣除变压器内部的电压损失以及变压器力率低的影响的缘故。)不过这78%是指从配电变压器低压侧
36、开始至计算的那个用电设备为止的全部线路。它通常包括有户外架空线、户内干线、支线等线段。应当是各段结果相加,全部约78%。(二) 估算电压损失是设计的工作,主要是防止将来使用时出现电压质量不佳的现象。由于影响计算的因素较多(主要的如计算干线负荷的准确性,变压器电源侧电压的稳定性等),因此,对计算要求很精确意义不大,只要大体上胸中有数就可以了。比如截面相比的关系也可简化为4比2 .5为1 .5倍,6比2 .5为2 .5倍,16比2 .5倍为6倍。这样计算会更方便些。(三) 在估算电动机线路电压损失中,还有一种情况是估算电动机起动时的电压损失。这是若损失太大,电动机便不能直接起动。由于起动时的电流大
37、,力率低,一般规定起动时的电压损失可达15%。这种起动时的电压损失计算更为复杂,但可用上述口诀介绍的计算结果判断,一般截面25平方毫米以内的铝线若符合5%的要求,也可符合直接起动的要求:35、50平方毫米的铝线若电压损失在3 .5%以内,也可满足;70、95平方毫米的铝线若电压损失在2 .5%以内,也可满足;而120平方毫米的铝线若电压损失在1 .5以内。才可满足。这3 .5%,2 .5%,1 .5 .%刚好是5%的七、五、三折,因此可以简单记为:“35以上,七、五、三折”。(四) 假如在使用中确实发现电压损失太大,影响用电质量,可以减少负荷(将一部分负荷转移到别的较轻的线路,或另外增加一回路
38、),或者将部分线段的截面增大(最好增大前面的干线)来解决。对于电动机线路,也可以改用电缆来减少电压损失。当电动机无法直接启动时,除了上述解决办法外,还可以采用降压起动设备(如星-三角起动器或自耦减压起动器等)来解决6 、根据电流来选截面6.1用途各种导线的截流量(安全用电)通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。导线的截流量与导线的截面有关,也与导线的材料(铝或铜)、型号(绝缘线或裸线等)、敷设方法(明敷或穿管等)以及环境温度(25左右或更大)等有关,影响的因素较多,计算也较复杂。平方级:1 1.5 2.5 4 6 10 16 25 35 50 70 95
39、 120 150 185 6.2口诀估算口诀:(铜线方法载流量与铝线加大一个线号的载流量。如16mm铜线的载流量按25mm2铝线计算。)二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 “二点五下乘以九,往上减一顺号走”说的是25mm及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如25mm导线,载流量为25922。5(A)。从4mm及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即48、67、106、165、254。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量
40、为截面数的35倍,即35351225(A)。从50mm及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减05。即50、70mm导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的25倍,依次类推。铝心绝缘线截流量与截面的倍数关系: S(截面)=0.785*D(直径)的平方10下5,100上二,25、35,四三界,70、95,两倍半。 穿管、温度,八九折。 裸线加一半。 铜线升级算。 6.3 说明口诀是以铝芯绝缘线、明敷在环境温度25的条件为准。若条件不同,口诀另有说明。绝缘线包括各种型号的橡皮绝缘线或塑料绝缘线。口诀对各种截面的截流量(电流,安)不
41、是直接指出,而是用“截面乘上一定倍数”来表示。为此,应当先熟悉导线截面(平方毫米)的排列:1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 150 185 生产厂制造铝芯绝缘线的截面通常从2.5开始,铜芯绝缘线则从1开始;裸铝线从16开始,裸铜线则从10开始。这口诀指出:铝芯绝缘线截流量,安,可以按“截面数的多少倍”来计算。口诀中阿拉伯数字表示导线截面(平方毫米),汉字数字表示倍数。把口诀的“截面与倍数关系”排列起来便如下:10*5 16、25*4 35 、45*3 70 、95*2.5 120*2现在再和口诀对照就更清楚了,原来“10下五”是指截面从10以下,截流
42、量都是截面数的五倍。“100上二”是指截面100以上,截流量都是截面数的二倍。截面25与35是四倍和三倍的分界处。这就是口诀“25、35四三界”。而截面70、95则为二点五倍。从上面的排列可以看出:除10以下及100以上之处,中间的导线截面是每每两种规格属同一种倍数。下面以明敷铝芯绝缘线,环境温度为25,举例说明:【例1】6平方毫米的,按“10下五”算得截流量为30安。【例2】150平方毫米的,按“100上二”算得截流量为300安。【例3】70平方毫米的,按“70、95两倍半”算得截流量为175安。从上面的排列还可以看出:倍数随截面的增大而减小。在倍数转变的交界处,误差稍大些。比如截面25与35是四倍与三倍的分界处,25属四倍的范围,但靠近向三倍变化的一侧,它按口诀是四倍,即100安,但实际不到四倍(按手册为97安),而35则相反,按口诀是三倍,即105安,实际则是117安,不过这对使用的影响并不大。当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可以略为超过105安便更准确了。同样,2.5平方毫米的导线位置在五倍的最始(左)端,实际便不止五倍(最大可达20安以上),不过为了减少导线内的电能损耗,通常都不用到这么大,手册中一般也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件质量管理课程设计
- 水泵站课程设计cad图
- 咖啡培训课程设计
- 2024至2030年中国组合办公文具盒行业投资前景及策略咨询研究报告
- 2024至2030年中国新华参康注射液数据监测研究报告
- 2024年香辣鱼佐料项目可行性研究报告
- 2024年特净宣纸项目可行性研究报告
- 视频照片剪辑课程设计
- 集散控制课程设计结论
- 中国风电变桨系统行业市场深度调研及竞争格局与投资研究报告(2024-2030版)
- 中小学反恐风险评估报告
- 品牌营销策略和品牌策略
- 视力矫正商业计划书
- 医学课件:临床决策分析
- 幼儿园优质公开课:中班音乐韵律《打喷嚏的小老鼠》课件
- 质量管理体系品质保证体系图
- 人教版(新插图)三年级上册数学 第9课时 用乘除两步计算 解决-归总问题 教学课件
- 四班三倒排班表
- 《现代汉语》考试复习题库及答案
- 13J104《蒸压加气混凝土砌块、板材构造》
- 初中语文七年级上册《世说新语二则》作业设计
评论
0/150
提交评论