下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、余弦定理练习题1在ABC中,如果BC6,AB4,cosB,那么AC等于()A6 B2 C3 D42在ABC中,a2,b1,C30°,则c等于()A. B. C. D23在ABC中,a2b2c2bc,则A等于()A60° B45° C120° D150°4在ABC中,A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则B的值为()A. B. C.或 D.或5在ABC中,a、b、c分别是A、B、C的对边,则acosBbcosA等于()Aa Bb Cc D以上均不对6如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()
2、A锐角三角形 B直角三角形 C钝角三角形 D由增加的长度决定8在ABC中,b,c3,B30°,则a为()A. B2 C.或2 D29已知ABC的三个内角满足2BAC,且AB1,BC4,则边BC上的中线AD的长为_10ABC中,sinAsinBsinC(1)(1),求最大角的度数11已知a、b、c是ABC的三边,S是ABC的面积,若a4,b5,S5,则边c的值为_12在ABC中,sin Asin Bsin C234,则cos Acos Bcos C_.13在ABC中,a3,cos C,SABC4,则b_.15已知ABC的三边长分别是a、b、c,且面积S,则角C_.16三角形的三边为连续
3、的自然数,且最大角为钝角,则最小角的余弦值为_17在ABC中,BCa,ACb,a,b是方程x22x20的两根,且2cos(AB)1,求AB的长18已知ABC的周长为1,且sin Asin Bsin C.(1)求边AB的长;(2)若ABC的面积为sin C,求角C的度数19在ABC中,BC,AC3,sin C2sin A.(1)求AB的值;(2)求sin(2A)的值20在ABC中,已知(abc)(abc)3ab,且2cos Asin BsinC,确定ABC的形状余弦定理答案1在ABC中,如果BC6,AB4,cosB,那么AC等于(A)A6B2C3 D42在ABC中,a2,b1,C30°
4、,则c等于(B)A. B.C. D23在ABC中,a2b2c2bc,则A等于(D)A60° B45°C120° D150°4在ABC中,A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则B的值为(D)A. B.C.或 D.或解析:选D.由(a2c2b2)tanBac,联想到余弦定理,代入得cosB··.显然B,sinB.B或.5在ABC中,a、b、c分别是A、B、C的对边,则acosBbcosA等于(C)Aa BB Cc D以上均不对6如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A锐角三角形
5、B直角三角形C钝角三角形 D由增加的长度决定解析:选A.设三边长分别为a,b,c且a2b2c2.设增加的长度为m,则cmam,cmbm,又(am)2(bm)2a2b22(ab)m2m2c22cmm2(cm)2,三角形各角均为锐角,即新三角形为锐角三角形8在ABC中,b,c3,B30°,则a为()A. B2C.或2 D2解析:选C.在ABC中,由余弦定理得b2a2c22accosB,即3a293a,a23a60,解得a或2.9已知ABC的三个内角满足2BAC,且AB1,BC4,则边BC上的中线AD的长为_解析:2BAC,ABC,B.在ABD中,AD .答案:10ABC中,sinAsin
6、BsinC(1)(1),求最大角的度数解:sinAsinBsinC(1)(1),abc(1)(1).设a(1)k,b(1)k,ck(k0),c边最长,即角C最大由余弦定理,得cosC,又C(0°,180°),C120°.11已知a、b、c是ABC的三边,S是ABC的面积,若a4,b5,S5,则边c的值为_解析:SabsinC,sinC,C60°或120°.cosC±,又c2a2b22abcosC,c221或61,c或.答案:或12在ABC中,sin Asin Bsin C234,则cos Acos Bcos C_.解析:由正弦定理ab
7、csin Asin Bsin C234,设a2k(k0),则b3k,c4k,cos B,同理可得:cos A,cos C,cos Acos Bcos C1411(4)答案:1411(4)13在ABC中,a3,cos C,SABC4,则b_.解析:cos C,sin C.又SABCabsinC4,即·b·3·4,b2.答案:215已知ABC的三边长分别是a、b、c,且面积S,则角C_.解析:absinCS·abcosC,sinCcosC,tanC1,C45°.答案:45°16三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为
8、_解析:设三边长为k1,k,k1(k2,kN),则2k4,k3,故三边长分别为2,3,4,最小角的余弦值为.答案:17在ABC中,BCa,ACb,a,b是方程x22x20的两根,且2cos(AB)1,求AB的长解:ABC且2cos(AB)1,cos(C),即cosC.又a,b是方程x22x20的两根,ab2,ab2.AB2AC2BC22AC·BC·cosCa2b22ab()a2b2ab(ab)2ab(2)2210,AB.18已知ABC的周长为1,且sin Asin Bsin C.(1)求边AB的长;(2)若ABC的面积为sin C,求角C的度数解:(1)由题意及正弦定理得A
9、BBCAC1,BCACAB,两式相减,得AB1.(2)由ABC的面积BC·AC·sin Csin C,得BC·AC,由余弦定理得cos C,所以C60°.19在ABC中,BC,AC3,sin C2sin A.(1)求AB的值;(2)求sin(2A)的值解:(1)在ABC中,由正弦定理,得ABBC2BC2.(2)在ABC中,根据余弦定理,得cos A,于是sin A.从而sin 2A2sin Acos A,cos 2Acos2 Asin2 A.所以sin(2A)sin 2Acoscos 2Asin.20在ABC中,已知(abc)(abc)3ab,且2cos Asin Bs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网传感器研发与供应合同
- 2024年喷泉建设项目维护施工协议一
- 保本理财投资合同三篇
- 2024年建筑外墙保温施工安全责任协议版B版
- 山西省房产过户合同参考模板
- 苗圃场地2024年度销售代理合同2篇
- 2024年新能源汽车充换电设施建设合同
- 2024年度大众化妆品电商渠道合作协议版
- 2024实验室装修改造及实验设备采购合同
- 2024年借款中介服务合同详细规定
- 《特许经营实务》(第二版)特许经营实务题库及答案
- 2023年北京市人力资源与社会保障系统事业单位人员招聘笔试题库及答案解析
- 《后妈茶话会》中英版
- 扩张型心肌病医疗护理查房
- 2022年4月自学考试00184市场营销策划试题及答案
- 跨境电商教学案例常用跨境电商物流模式
- 生命科学前沿技术智慧树知到答案章节测试2023年苏州大学
- 简明法语教程自学手册-第16课
- 2023年小学英语六年级英语英语王杯竞赛试题
- GB/T 6582-2021玻璃玻璃颗粒在98℃时的耐水性试验方法和分级
- GB/T 35414-2017高原地区室内空间弥散供氧(氧调)要求
评论
0/150
提交评论