版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.求由连续曲线求由连续曲线y= =f(x)对应的对应的曲边梯形曲边梯形面积的方法面积的方法 (2)取近似求和取近似求和:任取任取x xi xi- -1, xi,第,第i个小曲边梯形的面积用个小曲边梯形的面积用高为高为f(x xi)而宽为而宽为D Dx的小矩形面积的小矩形面积f(x xi)D Dx近似之。近似之。 (3)取极限取极限:,所求曲边所求曲边梯形的梯形的面积面积S为为 取取n个小矩形面积的和作为曲边梯个小矩形面积的和作为曲边梯形面积形面积S的近似值:的近似值:xiy=f(x)x yObaxi+1xixD1lim( )niniSfxx=D1( )niiSfxx=D (1)分割分割:在区间
2、在区间0,1上等间隔地插入上等间隔地插入n-1个点个点,将它等分成将它等分成n个小区间个小区间: 每个小区间宽度每个小区间宽度xban-= 11211,iina xx xxxxb-.一、定积分的定义一、定积分的定义 11( )( )nniiiibafxfnxx=-D =小矩形面积和S=如果当n时,S 的无限接近某个常数,这个常数为函数f(x)在区间a, b上的定积分,记作 baf (x)dx,即f (x)dx =f (x i)Dxi。 从求曲边梯形面积从求曲边梯形面积S的过程中可以看出的过程中可以看出,通过通过“四步四步曲曲”:分割分割-近似代替近似代替-求和求和-取极限得到解决取极限得到解决
3、.1( )lim( )ninibaf x dxfnx=-=ba即.定积分的定义: 定积分的相关名称:定积分的相关名称: 叫做积分号,叫做积分号, f(x) 叫做被积函数,叫做被积函数, f(x)dx 叫做被积表达式,叫做被积表达式, x 叫做积分变量,叫做积分变量, a 叫做积分下限,叫做积分下限, b 叫做积分上限,叫做积分上限, a, b 叫做积分区间。叫做积分区间。1( )lim( )ninibaf x dxfnx=-=ba即Oabxy)(xfy =. S=baf (x)dx; 按定积分的定义,有 (1) 由连续曲线y=f(x) (f(x)0) ,直线x=a、x=b及x轴所围成的曲边梯形
4、的面积为 (2) 设物体运动的速度v=v(t),则此物体在时间区间a, b内运动的距离s为 s=bav(t)dt。 Oab( )vv t=tv定积分的定义:1( )lim( )ninibaf x dxfnx=-=ba即.112001( )3Sf x dxx dx=根据定积分的定义右边图形的面积为1x yOf(x)=x213S =1SD2SD2( )2v tt= -+O Ov t t12gggggg3SDjSDnSD1n2n3njn1nn-4SD112005( )(2)3Sv t dttdt=- =根据定积分的定义左边图形的面积为.1.dxxf)(与badxxf)(的差别3定积分的值与积分变量用
5、什么字母表示无关,即有=bababaduufdttfdxxf)()()(4规定: -=abbadxxfdxxf)()(0)(=aadxxfdxxf)(是)(xf的全体原函数 是函数badxxf)(是一个和式的极限 是一个确定的常数注:2 .当xfiniD=)(1x的极限存在时,其极限值仅与被积函数及积分区间有关,而与区间ba,的分法及xi点的取法无关。f(x)a,b.(2)定积分的几何意义:Ox yab y=f (x)baf (x)dx =f (x)dxf (x)dx。 x=a、x=b与 x轴所围成的曲边梯形的面积。 当 f(x)0 时,积分dxxfba)(在几何上表示由 y=f (x)、 特
6、别地,当 a=b 时,有baf (x)dx=0。 . 当f(x)0时,由y=f (x)、x=a、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方,x yOdxxfSba)(-=-,dxxfba)(ab y=f (x) y=-f (x)dxxfSba)(-=baf (x)dx =f (x)dxf (x)dx。 =-S上述曲边梯形面积的负值。 定积分的几何意义:积分baf (x)dx 在几何上表示 baf (x)dx =f (x)dxf (x)dx。 =-S.ab y=f (x)Ox y( )yg x=探究探究:根据定积分的几何意义根据定积分的几何意义,如何用定积分表示图中如何用定积分表示图中
7、阴影部分的面积阴影部分的面积?ab y=f (x)Ox y1()baSfx dx=( )yg x=12( )( )bbaaS S Sf xdxg xdx= -=-2( )baSg x dx=.三三: : 定积分的基本性质定积分的基本性质 性质性质1. 1. dx)x( g)x(fba = =babadx)x( gdx)x(f性质性质2. 2. badx)x(kf = =badx)x(fk.三三: : 定积分的基本性质定积分的基本性质 定积分关于积分区间具有定积分关于积分区间具有可加性可加性 = =bccabadx)x(fdx)x(fdx)x(f 性质性质3. 3. = =2121 ccbcca
8、badx)x(fdx)x(fdx)x(fdx)x(fOx yab y=f (x).性质性质 3 不论不论a,b,c的相对位置如何都有的相对位置如何都有ab y=f(x)baf (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxf (x)dx。 cOx ybaf (x)dx =f (x)dxf (x)dx。 . 例例1:利用定积分的定义:利用定积分的定义,计算计算 的值的值. 130 x d x.例2.用定积分表示图中四个阴影部分面积积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(
9、0)(12=xfaxxf解:dxxAa20=0000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-1.积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(21)(22-=xfxxf解:dxxA221-=0000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1.积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(1)(3=xfbaxf解:dxAba=0000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)
10、=1f(x)=(x-1)2-1.可得阴影部分的面积为根据定积分的几何意义,上,在上,上连续,且在,在)在图中,被积函数(0)(20, 0)(01211) 1()(42-=xfxfxxf解:dxxdxxA-=- 1) 1( 1) 1(2202010000ayxyxyxyx-12ab-12f(x)=x2f(x)=x2f(x)=1f(x)=(x-1)2-1.成立。说明等式利用定积分的几何意义0sin22=-xdx例3:解:所以并有上,在上,上连续,且在,在在右图中,被积函数, 0sin20, 0sin0222sin)(21AAxxxxf=-=0)(1222=-=-AAdxxf2-22A1Axyf(x)=sinx1-1. 利用定积分的几何意义,判断下列定积分 值的正、负号。20sinxdx-212dxx利用定积分的几何意义,说明下列各式。 成立:0sin20=xdx=200sin2sinxdxxdx1)2).1)2).练习:试用定积分表示下列各图中影阴部分的面积。0yxy=x21 20 xy=f(x)y=g(x)aby.例例4dxx - -1021计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度商业摄影作品展示与推广合同全新范本3篇
- 2024年度原材料采购合同范本(含详细条款)3篇
- 2024年度品牌授权合同:某知名品牌授权某零售商使用其商标销售产品3篇
- 2024版大米品牌营销推广合作合同6篇
- 2024年标准员工销售提成协议模板版
- 2024年标准劳务合作协议范本版B版
- 2024年商品房内部认购项目社区文化活动组织协议3篇
- 北新汽车运输合同范本
- 2024年度房屋租赁合同关于租赁房屋租赁合同终止后的处理及费用结算协议3篇
- 2024年环保设备供应与维护合同
- 【培训课件】医疗机构从业人员行为规范
- 车间生产中的质量问题与质量改进
- 危岩治理施工方案
- 同等学力申硕-同等学力(社会学)笔试(2018-2023年)真题摘选含答案
- 疾病健康宣教的课件
- 部队心肺复苏
- 2024年人工智能在教育领域的革新与影响
- (全文版)养老院舆情危机处理策略和框架
- 计算机科学与人工智能教材
- 内河港口行业分析
- 新公共管理理论述评
评论
0/150
提交评论