高中数学高一年必修四《正弦函数余弦函数的图像》教学案_第1页
高中数学高一年必修四《正弦函数余弦函数的图像》教学案_第2页
高中数学高一年必修四《正弦函数余弦函数的图像》教学案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.4.1正弦函数、余弦函数的图象 教学过程一、 复习引入师:实数集与角的集合之间可以建立一一对应关系,而确定的角又有着唯一确定的正弦(或余弦)值。这样任意给定一个实数x有唯一确定的值sinx(cosx)与之对应,有这个对应法则所确定的函数y=sinx(或y=cosx)叫做正弦函数(或余弦函数),其定义域是R。遇到一个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?我们先来做一个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢【设计意图】通过动手实验,体会数学与其他的联系,激发学习兴趣。二、 讲授新课(1)正弦函数y=

2、sinx的图象下面我们就来一起画这个正弦函数的图象 第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2这一段分成n(这里n=12)等份.(预备:取自变量x值弧度制下角与实数的对应).第二步:在单位圆中画出对应于角,,,2的正弦线正弦线(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ). 第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x0,2的图象【设计意图】通过按步骤自己画图,体会如何画正

3、弦函数的图象。根据终边相同的同名三角函数值相等,所以函数y=sinx,x2k,2(k+1),kZ且k0的图象,与函数y=sinx,x0,2)的图象的形状完全一致。于是我们只要将y=sinx,x0,2)的图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2,就得到y=sinx,xR的图象.【设计意图】由三角函数值的关系,得出正弦函数的整体图象。 把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象. (2)余弦函数y=cosx的图象 探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变得到余弦函数的图象?根据诱导公式,

4、可以把正弦函数y=sinx的图象向左平移 单位即得余弦函数y=cosx的图象. 正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线【设计意图】通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。思考:在作正弦函数的图象时,应抓住哪些关键点?【设计意图】通过问题,为下面五点法绘图方法介绍做铺垫2用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的五个点关键是哪几个?(0,

5、1) (,0) (p,-1) (,0) (2p,1)只要这五个点描出后,图象的形状就基本确定了因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图3、 讲解范例例1 作下列函数的简图(1)y=1+sinx,x0,2, (2)y=-COSx x0,2【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。探究1 如何利用y=sinx,0,的图象,通过图形变换(平移、 翻转等)来得到y1sinx ,0,的图象;小结:函数值加减,图像上下移动;自变量加减,图像左右移动。探究2如何利用y=cos x,0,的图象,通过图形变换(平移、翻转等)来得到y-cosx ,0,的图象? 小结:这两个图像关于X轴对称。小结:先作 y=cos x图象关于x轴对称的图形,得到 y-cosx的图象, 【设计意图】通过探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。4、 小结作业先让学生小结,然后教师小结:1、本节课先用平移正弦线的方法得到了正弦曲线在一个周期上的函数,然后又经平移得到了它在上的函数图象,接着根据诱导公式由图象变换得到了余弦函数的图象,最后在知道的图象的形状后,归纳出了用“五点法”画函数图象的简图。2、通过本节课的学习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论