版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 §12.4 一阶线性微分方程 一、 线性方程 线性方程: 方程叫做一阶线性微分方程. 如果Q(x)º0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程叫做对应于非齐次线性方程的齐次线性方程. 下列方程各是什么类型方程? (1)Þ是齐次线性方程. (2) 3x2+5x-5y¢=0Þy¢=3x2+5x , 是非齐次线性方程. (3) y¢+y cos x=e-sin x , 是非齐次线性方程. (4), 不是线性方程. (5)Þ或, 不是线性方程. 齐次线性方程的解法: 齐次线性方程是变量可分离方程
2、. 分离变量后得 , 两边积分, 得 , 或 , 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程的通解. 解 这是齐次线性方程, 分离变量得 , 两边积分得 ln|y|=ln|x-2|+lnC, 方程的通解为 y=C(x-2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x的未知函数u(x), 把 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 , 化简得 , , 于是非齐次线性方程的通解为 , 或 . 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程的
3、通解. 分离变量得 , 两边积分得 ln y=2ln (x+1)+ln C, 齐次线性方程的通解为 y=C(x+1)2. 用常数变易法. 把C换成u, 即令y=u×(x+1)2, 代入所给非齐次线性方程, 得 , 两边积分, 得 . 再把上式代入y=u(x+1)2中, 即得所求方程的通解为 . 解: 这里, .因为 , , ,所以通解为 . 例3 有一个电路如图所示, 其中电源电动势为E=Emsinwt(Em、w都是常数), 电阻R和电感L都是常量. 求电流i(t). 解 由电学知道, 当电流变化时, L上有感应电动势. 由回路电压定律得出 , 即 . 把E=Emsinw t代入上式
4、, 得 . 初始条件为 i|t=0=0. 方程为非齐次线性方程, 其中 , . 由通解公式, 得 . 其中C为任意常数. 将初始条件i|t=0=0代入通解, 得, 因此, 所求函数i(t)为 . 二、伯努利方程 伯努利方程: 方程 (n¹0, 1)叫做伯努利方程. 下列方程是什么类型方程? (1), 是伯努利方程. (2), Þ, 是伯努利方程. (3), Þ, 是伯努利方程. (4), 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以yn除方程的两边, 得 令z =y1-n , 得线性方程 . 例4 求方程的通解. 解 以y2除方程的两端, 得 , 即 , 令z=y-1, 则上述方程成为 . 这是一个线性方程, 它的通解为 . 以y-1代z , 得所求方程的通解为 . 经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程. 解 若把所给方程变形为 , 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x+y=u, 则原方程化为 , 即. 分离变量, 得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 系绳物体的浮力问题-2023年中考物理复习讲练(原卷版)
- 知识产权保护承诺书
- 美丽的颐和园导游词(33篇)
- 物流运输车辆租赁合同(35篇)
- 粗砂垫层试验段的施工方案及试验段总结
- 23.1 平均数与加权平均数 同步练习
- 天津市南开区2024-2025学年七年级上学期11月期中道德与法治试题(含答案)
- 2024年建筑电工(建筑特殊工种)考试试题题库
- 黑龙江省大庆市肇源县联盟学校2024-2025学年七年级上学期11月期中生物试题(含答案)
- 广东省广州市名校2025届高三上学期综合测试(一)语文试题(含答案)
- 《食品添加剂应用技术》第二版 课件 任务1.2 食品添加剂使用标准检索-1标准解读
- 检察院预防职务犯罪讲座
- 2024年二级建造师继续教育题库及答案(500题)
- 大数据在文学作品影响力分析中的应用
- 河北省保定市劳动合同范本
- 脱硫计算公式
- 数字货币对会计的影响
- 我的家乡吉林课件
- 中国儿童有声读物行业市场现状分析及竞争格局与投资发展研究报告2024-2029版
- 云南开放大学学前儿童社会教育离线作业1-4
- 医院大中型设备成本效益分析表格
评论
0/150
提交评论