80211n信道模型matlab代码_第1页
80211n信道模型matlab代码_第2页
80211n信道模型matlab代码_第3页
80211n信道模型matlab代码_第4页
80211n信道模型matlab代码_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、function R, Q, sigma_deg = correlation(M, spacing, d_norm, . cluster_number, amplitude_cluster, . PAS_type, phi_deg, AS_deg, . delta_phi_deg, type)% R, Q, sigma_deg = correlation(M, spacing, d_norm,% cluster_number, amplitude_cluster, PAS_type,% phi_deg, AS_deg, delta_phi_deg, type)% Derives the cor

2、relation matrix R from the description of the% environment, namely the antenna element spacing and the way the% waves impinge (number of clusters, PAS type, AS and mean angle of% incidence). The generated correlation coefficients are either% (complex) field correlation coefficients (type = 0) or (re

3、al% positive) power correlation coefficients (type = 1).% Inputs% * Variable M, number of antenna elements of the ULA% * Variable spacing, spacing of the antenna elements of the ULA% * Vector d_norm, containing the relative spacings of the M% elements of the ULA with respect to the first one% * Vari

4、able cluster_number, number of impinging clusters% * Vector amplitude_cluster, containing the amplitude of% the cluster_number impinging clusters% * Variable PAS_type, defines the nature of the PAS, isotropic% uniform (1), isotropic Gaussian (2), isotropic Laplacian (3)% or directive Laplacian (6) a

5、ccording to 3GPP-3GPP2 SCM AHG% radiation pattern% * Vector phi_deg, containing the AoAs of the number_cluster% clusters% * Vector AS_deg, containing the ASs of the number_cluster% clusters% * Vector delta_phi_deg, containing the constraints limits% of the truncated PAS, if applicable (Gaussian and

6、Laplacian% case)% * Variable type, defines whether correlation properties% should be computed in field (0) or in power (1)% Outputs% * 2-D Hermitian matrix R of size M x M, whose elements are% the correlation coefficients of the corresponding elements% of the ULA impinged by the described PAS %Vecto

7、r Q of cluster_number elements, giving the normalisation% coefficients to be applied to the clusters in order to have% the PAS fulfilling the definition of a pdf% * Vector sigma_deg of cluster_number of elements, giving% the standard deviations of the clusters, derived from% their description. There

8、 is not necessarily equality between% the given AS and the standard deviation of the modelling PAS.% Revision history% April 2003 - Addition of case 6 (directive Laplacian)% February 2002 - Creation% STANDARD DISCLAIMER% CSys is furnishing this item "as is". CSys does not provideany% warra

9、nty of the item whatsoever, whether express, implied, or% statutory, including, but not limited to, any warranty of% merchantability or fitness for a particular purpose or any% warranty that the contents of the item will be error-free.% In no respect shall CSys incur any liability for any damages,%

10、including, but limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way% connected to the use of the item, whether or not based upon% warranty, contract, tort, or otherwise; whether or not injury was% sustained by persons or property or otherwise; a

11、nd whether or not% loss was sustained from, or arose out of, the results of, %the item, or any services that may be provided by CSys.% (c) Laurent Schumacher, AAU-TKN/IES/KOM/CPK/CSys - February 2002% Normalisationswitch(PAS_type) case 1 % Uniform distribution Q = normalisation_uniform(cluster_numbe

12、r, . amplitude_cluster, . AS_deg); sigma_deg = -1; % meaningless in uniform PAS case 2 % Gaussian distribution Q, sigma_deg = . normalisation_gaussian(cluster_number, . amplitude_cluster, . AS_deg, . delta_phi_deg); case 3, 6 % Laplacian distribution Q, sigma_deg = . normalisation_laplacian(cluster_

13、number, . amplitude_cluster, . AS_deg, . delta_phi_deg); otherwise disp('PAS type non supported. Exiting.'); return %ÎÒ°Ñbreak¸ÄÁËend if (M>1) % Complex correlation computation switch(PAS_type) case 1 % Isotropic Uniform distribution Rxx = bessel(0,

14、2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=1:cluster_number Rxx = Rxx + Q(k).*Rxx_uniform(d_norm, . phi_deg(k), . AS_deg(k); Rxy = Rxy + Q(k).*Rxy_uniform(d_norm, . phi_deg(k), . AS_deg(k); end; case 2 % Isotropic Gaussian distribution Rxx = bessel(0,2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=1:

15、cluster_number Rxx = Rxx + Q(k).*Rxx_gaussian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); Rxy = Rxy + Q(k).*Rxy_gaussian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); end; case 3 % Isotropic Laplacian distribution Rxx = bessel(0,2.*pi.*d_norm); Rxy = zeros(size(Rxx); for k=

16、1:cluster_number Rxx = Rxx + Q(k).*Rxx_laplacian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); Rxy = Rxy + Q(k).*Rxy_laplacian(d_norm, . phi_deg(k), . sigma_deg(k), . delta_phi_deg(k); end; case 6 % Directive Laplacian distribution % Hard-coded radiation pattern characteristics tmp = rho

17、_lpl_SCM_AHG_approx(d_norm, . phi_deg, . Q, . sigma_deg, . delta_phi_deg, . 12, 20, 70); Rxx = real(tmp); Rxy = imag(tmp); end; % Correlation coefficient computation if (type = 0) tmp = Rxx + i.* Rxy; else tmp = Rxx.2 + Rxy.2; end; R = toeplitz(tmp);else R = 1;endfunction E=erfcomp(z); % ERFCOMP (ko

18、mplexes) Fehlerintegral % % E=ERFCOMP(Z) % % Die (komplexe) Matrix Z ist das Eingabeargument % für diese Prozedur. Zurückgeliefert wird die % komplexe Error-Funktion. % % Entnommen aus Abramowitz, % Abschnitt "Error Functions and Fresnel Integrals", % Seite 299 zx,sx=size(z); % D

19、imension der Eingabematrix x=real(z); y=imag(z); x=x(:); y=y(:); i=sqrt(-1); % E=erf(x); KOa=+0.3275911; % Hier erfolgt die Berechnung der KOA=+0.254829592; % Error-Funktion durch eine rationale KOB=-0.284496736; % Approximation für reelle Argumente. KOC=+1.421413741; KOD=-1.453152027; KOE=+1.0

20、61405429; w=1 ./(1 + KOa .*abs(x); P=KOE .*w + KOD; P=P .*w + KOC; P=P .*w + KOB; P=P .*w + KOA; P=P .*w; Q=exp(-(x .*x); E=(1 - Q .*P) .*sign(x); S=zeros(size(E); abserr=100; n=1; while abserr>1E-12, fn=2 .*x - 2 .*x .*cosh(n .*y) .*cos(2 .*x .*y) + n .*sinh(n .*y) .*sin(2 .*x .*y); gn=2 .*x .*c

21、osh(n .*y) .*sin(2 .*x .*y) + n .*sinh(n .*y) .*cos(2 .*x .*y); fgn=(fn + i .*gn) .*exp(-0.25 .*(n .2) ./( (n .2) + (4 .*(x .2); Sakt=2 .*fgn .*exp(-(x .2) ./pi; abserr=max(abs(Sakt); n=n+1; S=S + Sakt; end ki=find(x=0 & y=0); if isempty(ki), E(ki)=zeros(size(ki); end ki=find(x=0 & y=0); if

22、isempty(ki), E(ki)=i .*y(ki) ./pi; end ki=find(x=0 & y=0); if isempty(ki), xk=x(ki); yk=y(ki); E(ki)=erf(xk) + (exp(-(xk .2) .*( (1 - cos(2 .*xk .*yk) + i .*sin(2 .*xk .*yk) ./(2 .*pi .*xk); end E=E+S; E=reshape(E,zx,sx);geometry2correlation% User interface to the definition of the correlation m

23、atrices% of the MIMO radio channel model. For both Node B and UE,% the user is prompted for% * the number of elements% * the spacing between elements (Uniform Linear Array is assumed)% * the number of impinging clusters of waves% * their Power Azimuth Spectrum (PAS) type (Uniform, Gaussian or Laplac

24、ian)% * the mean angle of incidence (in degrees)% * the Azimuth Spread (AS)% STANDARD DISCLAIMER% CSys is furnishing this item "as is". CSys does not provide any% warranty of the item whatsoever, whether express, implied, or% statutory, including, but not limited to, any warranty of% merch

25、antability or fitness for a particular purpose or any% warranty that the contents of the item will be error-free.% In no respect shall CSys incur any liability for any damages,% including, but limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way

26、% connected to the use of the item, whether or not based upon% warranty, contract, tort, or otherwise; whether or not injury was% sustained by persons or property or otherwise; and whether or not% loss was sustained from, or arose out of, the results of, the% item, or any services that may be provid

27、ed by CSys.% (c) Laurent Schumacher, AAU/TKN/I8/KOM/CPK/CSys - September 2001 clear;clf;display = 1; % Interactive dialog% % Downlink or uplink string = sprintf('n');disp(string);Downlink = -1;while (Downlink = 0) & (Downlink =1) Downlink = input('Downlink (Yes = 1, no = 0)? ');e

28、nd; % Field or envelope/power string = sprintf('n');disp(string);Field = -1;while (Field = 0) & (Field =1) Field = input('Type of correlation coefficient (Field = 0, Envelope = 1)? ');end; % Configuration of Node B string = sprintf('n* Node B *n');M, spacing_Node_B, d_nor

29、m_Node_B, cluster_number_Node_B, . amplitude_cluster_Node_B, PAS_type_Node_B, phi_deg_Node_B, . AS_deg_Node_B, delta_phi_deg_Node_B = dialog(string); % Configuration of UE string = sprintf('n* UE *n');N, spacing_UE, d_norm_UE, cluster_number_UE, . amplitude_cluster_UE, PAS_type_UE, phi_deg_U

30、E, AS_deg_UE, . delta_phi_deg_UE = dialog(string); % Computation of the correlation matrices% % Node B R_Node_B, Q_Node_B, sigma_deg_Node_B = correlation(M, spacing_Node_B, . d_norm_Node_B, . cluster_number_Node_B, . amplitude_cluster_Node_B, . PAS_type_Node_B, . phi_deg_Node_B, . AS_deg_Node_B, . d

31、elta_phi_deg_Node_B, Field); if (display & (M=1) figure(1); clf; switch(PAS_type_Node_B) case 1 plot_uniform(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . AS_deg_Node_B, 1, 'b-'); case 2 plot_gaussian(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . sigma_deg_Node_B, delta_phi_deg

32、_Node_B, 1, 'b-'); case 3 plot_laplacian(cluster_number_Node_B, Q_Node_B, phi_deg_Node_B, . sigma_deg_Node_B, delta_phi_deg_Node_B, 1, 'b-'); otherwise break; end;end; % UE R_UE, Q_UE, sigma_deg_UE = correlation(N, spacing_UE, d_norm_UE, . cluster_number_UE, . amplitude_cluster_UE, .

33、 PAS_type_UE, phi_deg_UE, . AS_deg_UE, delta_phi_deg_UE, Field);if (display & (N=1) figure(1); switch(PAS_type_UE) case 1 plot_uniform(cluster_number_UE, Q_UE, phi_deg_UE, AS_deg_UE, 2, 'b-'); case 2 plot_gaussian(cluster_number_UE, Q_UE, phi_deg_UE, sigma_deg_UE, . delta_phi_deg_UE, 2,

34、'b-'); case 3 plot_laplacian(cluster_number_UE, Q_UE, phi_deg_UE, sigma_deg_UE, . delta_phi_deg_UE, 2, 'b-'); otherwise break end;end; % Information exploitation% if Downlink nTx = M; nRx = N; R = kron(R_Node_B, R_UE)else nTx = N; nRX = M; R = kron(R_UE, R_Node_B)end;% SelfGeometry2T

35、GnCorrelation% Computation of the correlation matrices of the MIMO radio% channel model described in IEEE 802 document 11-03/940r0% for a limited set of hard-coded scenarios.% STANDARD DISCLAIMER% The Computer Science Institute of the University of Namur (hereafter% "FUNDP-INFO") is furnis

36、hing this item "as is". FUNDP-INFO does not% provide any warranty of the item whatsoever, whether express,% implied, or statutory, including, but not limited to, any warranty% of merchantability or fitness for a particular purpose or any% warranty that the contents of the item will be erro

37、r-free.% In no respect shall FUNDP-INFO incur any liability for any damages,% including, but not limited to, direct, indirect, special, or% consequential damages arising out of, resulting from, or any way% connected to the use of the item, whether or not based upon% warranty, contract, tort, or othe

38、rwise; whether or not injury was% sustained by persons or property or otherwise; and whether or not% loss was sustained from, or arose out of, the results of, the% item, or any services that may be provided by FUNDP-INFO.% (c) Laurent Schumacher, FUNDP-INFO - November 2003 clear all;close all;delete

39、 TGnCorrelationMatrices.mat; TGnScenario = 'A','B','C','D','E','F'NumberOfTxAntennas = 1,2,4;SpacingTx = .5,1,4;NumberOfRxAntennas = 1,2,4;SpacingRx = .5,1,4; qq = 1;for (kk=1:size(TGnScenario,2) for (ll=1:size(NumberOfTxAntennas,2) for (mm=1:size(Numb

40、erOfRxAntennas,2) for (nn=1:size(SpacingTx,2) for (oo=1:size(SpacingRx,2) Scenario = TGnScenario(kk),'_',num2str(NumberOfTxAntennas(ll),. 'x',num2str(NumberOfRxAntennas(mm),'_' if (SpacingTx(nn) < 1) Scenario = Scenario,'i',num2str(inv(SpacingTx(nn),'_' els

41、e Scenario=Scenario,num2str(SpacingTx(nn),'_' end; if (SpacingRx(oo) < 1) Scenario = Scenario,'i',num2str(inv(SpacingRx(oo); else Scenario=Scenario,num2str(SpacingRx(oo); end; time = clock; disp(num2str(time(4),':',num2str(time(5),'.',num2str(floor(time(6),. '

42、- Iteration ',num2str(qq),'/',num2str(size(TGnScenario,2)*. size(NumberOfTxAntennas,2)*size(NumberOfRxAntennas,2)*. size(SpacingTx,2)*size(SpacingRx,2),' - ',Scenario); % % Description of scenarios % switch TGnScenario(kk) case 'A' % Flat fading with 0 ns rms delay spread

43、 (one tap at 0 ns delay model) PDP_dB = 0; % Average power dB 0; % Relative delay (ns) % Power roll-off coefficients Power_per_angle_dB = 0; % Tx AoD_Tx_deg = 45; AS_Tx_deg = 40; Type_Tx = 3; % Rx AoA_Rx_deg = 45; AS_Rx_deg = 40; Type_Rx = 3; case 'B' % Typical residential environment, LOS c

44、onditions, 15 ns rms delay spread, and 10 dB Ricean K-factor at first delay PDP_dB = 0 -5.4287 -2.5162 -5.8905 -9.1603 -12.5105 -15.6126 -18.7147 -21.8168; % Average power dB 0 10e-9 20e-9 30e-9 40e-9 50e-9 60e-9 70e-9 80e-9 ; % Relative delay (ns) % Power roll-off coefficients Power_per_angle_dB =

45、0 -5.4287 -10.8574 -16.2860 -21.7147 -Inf -Inf -Inf -Inf; -Inf -Inf -3.2042 -6.3063 -9.4084 -12.5105 -15.6126 -18.7147 -21.8168; % Tx AoD_Tx_deg = 225.1084.*ones(1,5) -Inf.*ones(1,4); -Inf.*ones(1,2) 106.5545.*ones(1,7); AS_Tx_deg = 14.4490.*ones(1,5) -Inf.*ones(1,4); -Inf.*ones(1,2) 25.4311.*ones(1,7); Type_Tx = 3.*ones(1, size(AoD_Tx_deg, 2); % Rx AoA_Rx_deg = 4.3943.*ones(1,5) -

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论