版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§4导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则1.理解导数的四则运算法则.(重点)2.能利用导数的四则运算法则求导.(重点、难点)基础·初探教材整理1导数的加法与减法法则阅读教材P42部分内容,完成下列问题.两个函数和(差)的导数等于这两个函数导数的和(差),即f(x)g(x)f(x)g(x),f(x)g(x)f(x)g(x).教材整理2导数的乘法与除法法则阅读教材P44“练习”以下至P45“例3”以上部分,完成下列问题.一般地,若两个函数f(x)和g(x)的导数分别是f(x)和g(x),则f(x)g(x)f(x)g(x)f(x)g(x),(g(
2、x)0).特别地,当g(x)k时,有kf(x)kf(x).若f(x),则f(x)_.【解析】f(x).【答案】质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型导数的四则运算(1)函数y(2x23)(3x2)的导数是_;(2)函数y2xcos x3xln x的导数是_;(3)函数y的导数是_.【精彩点拨】仔细观察和分析各函数的结构特征,紧扣求导运算法则,联系基本初等函数求导公式,必要时可进行适当的恒等变形后求导.【自主解答】(1)法一:y(2x23)(3x2)(2x23)·(3x2)4x(3x2)(2x23
3、)·318x28x9.法二:y(2x23)(3x2)6x34x29x6,y18x28x9.(2)y(2xcos x3xln x)(2x)cos x2x(cos x)3xln xx(ln x)2xln 2cos x2xsin x3·2xln 2cos x2xsin x3ln x3.(3)y.【答案】(1)y18x28x9(2)y2x ln2 cos x2x sin x3 ln x3(3)y1.先区分函数的结构特点,即函数的和、差、积、商,再根据导数的四则运算法则求导数.2.对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.再练一题1.求下
4、列各函数的导数.(1)y(1);(2)yxsin cos ;(3)y.【解】(1)化简得y·1xx,yxx.(2)yxsin cos xsin x,yx(sin x)1cos x.(3)y.利用导数求曲线的切线方程求过点(1,1)与曲线f(x)x32x相切的直线方程. 【导学号:94210044】【精彩点拨】点(1,1)不一定是切点,故设出切点坐标(x0,y0),求出f(x0).写出切线方程,利用点(1,1)在切线上求x0,从而求出切线方程.【自主解答】设P(x0,y0)为切点,则切线斜率为kf(x)3x2,故切线方程为yy0(3x2)(xx0).(x0,y0)在曲线上,y0x2x0
5、.又(1,1)在切线上,将式和(1,1)代入式得1(x2x0)(3x2)(1x0).解得x01或x0.k1或k.故所求的切线方程为y1x1或y1(x1),即xy20或5x4y10.1.求曲线的切线方程一定要分清是求曲线在点P处的切线方程,还是求过点P与曲线相切的直线方程.2.本题中点(1,1)虽然在曲线上,但经过该点的切线不一定只有一条,即该点可能是切点,也可能是切线与曲线的交点.再练一题2.求曲线y在点(1,1)处的切线方程.【解】y,当x1时,y0,即曲线在点(1,1)处的切线斜率k0.因此,曲线y在点(1,1)处的切线方程为y1.探究共研型导数运算法则的综合应用探究1二次函数yf(x)的
6、图像过原点,且它的导函数yf(x)的图像是过第一、二、三象限的一条直线,则函数yf(x)的图像的顶点在第几象限?【提示】设f(x)ax2bx(a0),f(x)2axb,yf(x)2axb的图像是一条过第一、二、三象限的直线,即a>0,b>0,<0,<0,f(x)的图像的顶点在第三象限.探究2若函数f(x)ax4bx2c满足f(1)2,试求f(1)的值.【提示】由f(x)ax4bx2c得f(x)4ax32bx,又f(1)2,所以4a2b2,即2ab1,f(1)4a2b2(2ab)2.已知函数f(x)的图像在点M(1,f(1)处的切线方程为x2y50,求函数yf(x)的解析
7、式.【精彩点拨】利用点M为切点是切线与曲线的公共点,以及切线的斜率为f(1)联立方程组,可求出a,b的值.【自主解答】由函数f(x)的图像在点M(1,f(1)处的切线方程为x2y50,知12f(1)50,即f(1)2,由切点为M点得f(1).f(x),即解得a2,b3或a6,b1(由b10,故b1舍去).所以所求的函数解析式为f(x).解决与切线有关的问题时,要充分运用切点的坐标.特别是切点的横坐标,因为切点的横坐标与导数有着直接的联系.再练一题3.图241中有一个是函数f(x)x3ax2(a21)x1(aR,且a0)的导函数的图像,则f(1)()图24
8、173;1A.B.C.D.或【解析】f(x)x22axa21,由题图与知,它们的对称轴都为y轴,此时a0,与题设不符合,故题图是f(x)的导函数的图像.由题图知f(0)0,a<0,所以a1,此时f(x)x3x21,所以f(1).【答案】B构建·体系1.函数f(x)(x21)x3的导数为()A.f(x)5x43x2B.f(x)6x53x2C.f(x)5x33x2D.f(x)6x5x3【解析】f(x)x5x3,f(x)5x43x2.【答案】A2.函数yx2cos 2x的导数为()A.y2xcos 2xx2sin 2xB.y2xcos 2x2x2sin 2xC.yx2cos 2x2xsin 2xD.y2xcos 2x2x2sin 2x【解析】y(x2)cos 2xx2(cos 2x)2xcos 2xx2(sin 2x)·(2x)2xcos 2x2x2sin 2x.【答案】B3.若曲线yx1(R)在点(1,2)处的切线经过坐标原点,则_.【解析】因为y·x1,所以在点(1,2)处的切线斜率k,则切线方程为y2(x1).又切线过原点,故02(01),解得2.【答案】24.已知函数f(x)fsin xcos x,则f_. 【导学号:94210045】【解析】f(x)fcos xsin x,ffcos sin 1,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度毛竹产业扶贫项目承包合同3篇
- 2025版教育信息化项目实施及合作保密协议3篇
- 二零二五年度园林绿化养护与节水技术应用合同3篇
- 2025版学校门卫服务及校园安全防范协议2篇
- 2025年度新型城镇化项目卖方信贷贷款合同
- 二零二五版毛竹砍伐与生态旅游项目投资合作协议2篇
- 2025年度数据中心外接线用电环保责任合同
- 二零二五年度GRC构件定制化设计与施工服务合同3篇
- 二零二五年度公司自愿离婚协议书编制指南
- 个人借款抵押车全面合同(2024版)2篇
- 2025届高考语文复习:散文的结构与行文思路 课件
- 电网调度基本知识课件
- 拉萨市2025届高三第一次联考(一模)语文试卷(含答案解析)
- 《保密法》培训课件
- 回收二手机免责协议书模板
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- (权变)领导行为理论
- 2024届上海市浦东新区高三二模英语卷
- 2024年智慧工地相关知识考试试题及答案
- GB/T 8005.2-2011铝及铝合金术语第2部分:化学分析
- 不动产登记实务培训教程课件
评论
0/150
提交评论