下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、14.2全等三角形的判定2(ASA)导学案使用说明与学法指导1.课前完成自主学习,牢记基础知识,掌握基本题型,时间不超过15分钟。2.组内探究、合作学习完成课内探究不超过20分钟。3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。4.人人参与,合作学习,人人都有收获,人人都有进步。一、教材分析(一)学习目标1.通过画图,经历探究ASA的过程,会运用“S”识别三角形全等,为证明线段相等或角相等创造条件2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3.选择SAS或SAS判定两个三角形全等。(二)学习重点和难点:教学重点:已知两角一边的三角形全等探究教学难点:
2、灵活运用三角形全等条件证明二、自主学习:阅读P101102页回答下列问题:1.画一画:如图,ABC是任意一个三角形,画A1B1C1 ,使A1B1=AB,A1=A,B1=B,把画的A1B1C1剪下来放在ABC进行比较,它们是否重合?由此你能得出什么结论?(用自己的方法画出或参考P101页步骤画出,必须能复述画法.)得出结论: 对应相等的两个三角形全等(简称“角边角”或“ASA”)2.用数学语言表述全等三角形判定(三)在ABC和中, ABC 3.探究二:两角和其中一角的对边对应相练一练1.如图2,O是AB的中点, 要使通过角边角(ASA)来判定OACOBD,需要添加一个条件,下列条件正确的是( )
3、 A、A=B B、AC=BD C、C=D2.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法( ) A、选去,B、选 C、选去 3.已知:如图AB是CAD的平分线,CD. 求证:BCBD. 证明:AB是CAD的平分线, .在ABC和ABD中,ABCABD( ). .三、 课内探究活动一 合作探究 如图,已知ABDC,ADBC. 求证:ABDCDB.活动二 学以致用1、如图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE2、如图,是D上AB一点,DF交AC于点E,DE=DF,FCAB,AE与CE是否相等?证明你的结论。 活动三 变式训练ACDB如图,已知ABCD,ACBCBD,判断图中的两个三角形是否全等,如果全等请说明理由如果不全等,可以改变什么条件可使这两个三角形全等。小组讨论交流活动四 本节课小结(我的收获) (1)知识方面: (2)学习方法方面:四、课后训练1.已知:点D在AB上,点E在AC上, BEAC, CDAB,AB=AC,求证:BD=CE2.如图,要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再定出BF 的垂线DE,使A,C,E在一条直线上,这时测得DE的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国民用航空飞行学院《汉语方言学》2023-2024学年第一学期期末试卷
- 郑州理工职业学院《公路施工组织与概预算》2023-2024学年第一学期期末试卷
- 小学物品领用制度
- 浙江传媒学院《建筑技术的设计》2023-2024学年第一学期期末试卷
- 漳州城市职业学院《摄影技术与训练》2023-2024学年第一学期期末试卷
- 缺陷管理与生产效率提升措施
- 双十二家居设计解析
- 专业基础-房地产经纪人《专业基础》点睛提分卷1
- 房地产经纪综合能力-《房地产经济综合能力》押题密卷
- 家长会学生发言稿 马晓丽
- 2025年中国南水北调集团限公司总部招聘工作人员(27人)高频重点提升(共500题)附带答案详解
- 《面神经炎护理措施分析》3900字(论文)
- 缝纫技能培训课件
- 《翻板式隔爆阀性能试验方法》
- 2024年销售岗位工作总结
- 数字化解决方案设计师职业技能竞赛参考试题库(含答案)
- 采购管理实务案例库
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 2024-2030年中国钢结构行业发展需求及投资规划分析报告版
- 2022年河南省公务员录用考试《行测》真题及答案解析
- 2024ESC心房颤动管理指南解读
评论
0/150
提交评论