




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、N的阶级大写 小写 英文注音 国际音标注音 中文注音 alpha alfa
2、0; 阿耳法 beta beta
3、贝塔 gamma gamma 伽马
4、 deta delta 德耳塔 &
5、#160; epsilon epsilon 艾普西隆 zeta
6、0; zeta 截塔 eta
7、60; eta 艾塔 theta &
8、#160; ita 西塔 iota
9、 iota 约塔 kappa
10、60; kappa 卡帕 lambda lambda
11、60; 兰姆达 mu miu
12、60; 缪 nu niu
13、; 纽 xi
14、; ksi 可塞 omicron omikron
15、; 奥密可戎 pi pai
16、0; 派 rho rou
17、; 柔 sigma sigma
18、160; 西格马 tau tau &
19、#160; 套 upsilon jupsilon 衣普西隆
20、 phi fai 斐 &
21、#160; chi khai 喜 &
22、#160; psi psai 普西
23、 omega omiga 欧米伽符号表符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作exaxa的x次方;有理数x由反函数定义ln xexp x 的反函数ax同 axlogba以b为底a的对数; blogba = acos
24、x在自变量x处余弦函数的值tan x其值等于 sin x/cos xcot x余切函数的值或 cos x/sin xsec x正割含数的值,其值等于 1/cos xcsc x余割函数的值,其值等于 1/sin xasin xy,正弦函数反函数在x处的值,即 x = sin yacos xy,余弦函数反函数在x处的值,即 x = cos yatan xy,正切函数反函数在x处的值,即 x = tan yacot xy,余切函数反函数在x处的值,即 x = cot yasec xy,正割函数反函数在x处的值,即 x = sec yacsc xy,余割函数反函数在x处的值,即 x = csc y角度
25、的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积a?ba、b向量的点积(a?b)a、b向量的点积|v|向量v的模|x|数x的绝对值表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成:。这表示 1 + 2 + + nM表示一个矩阵或数列或其它|v>列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v|被写成行或可被看成从1×
26、k阶矩阵的向量dx变量x的一个无穷小变化,dy, dz, dr等类似ds长度的微小变化变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离r变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离|M|矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积|M|矩阵M的行列式的值,为一个面积、体积或超体积det MM的行列式M-1矩阵M的逆矩阵v×w向量v和w的向量积或叉积vw向量v和w之间的夹角A?B×C标量三重积,以A、B、C为列的矩阵的行列式uw在向量w方向上的单位向量,即 w/|w|df函数f的微小变化,足够小以至适合于所有相关函数的线
27、性近似df/dxf关于x的导数,同时也是f的线性近似斜率f '函数f关于相应自变量的导数,自变量通常为x?f/?xy、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。任何可能导致变量混淆的地方都应明确地表述(?f/?x)|r,z保持r和z不变时,f关于x的偏导数grad f元素分别为f关于x、y、z偏导数 (?f/?x), (?f/?y), (?f/?z) 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量场,称为f的梯度?向量算子(?/?x)i + (?/?x)j + (?/?x)k, 读作 "del&qu
28、ot;?ff的梯度;它和 uw 的点积为f在w方向上的方向导数?w向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z)curl w向量算子 ? 同向量 w 的叉积?×ww的旋度,其元素为(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y)?拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2)f "(x)f关于x的二阶导数,f '(x)的导数d2f/dx2f关于x的二阶导数f(2)(x)同样也是f
29、关于x的二阶导数f(k)(x)f关于x的第k阶导数,f(k-1) (x)的导数T曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|ds沿曲线方向距离的导数曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|NdT/ds投影方向单位向量,垂直于TB平面T和N的单位法向量,即曲率的平面曲线的扭率: |dB/ds|g重力常数F力学中力的标准符号k弹簧的弹簧常数pi第i个物体的动量H物理系统的哈密尔敦函数,即位置和动量表示的能量Q, HQ, H的泊松括号以一个关于x的函数的形式表达的f(x)的积分函数f 从a到b的定积分。当f是正的且 a &l
30、t; b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积L(d)相等子区间大小为d,每个子区间左端点的值为 f的黎曼和R(d)相等子区间大小为d,每个子区间右端点的值为 f的黎曼和M(d)相等子区间大小为d,每个子区间上的最大值为 f的黎曼和m(d)相等子区间大小为d,每个子区间上的最小值为 f的黎曼和+:plus(positive正的)-:minus(negative负的)*:multiplied by÷:divided by=:be equal to:be approximately equal to ():round brackets(
31、parenthess):square brackets:braces:because:therefore:less than or equal to:greater than or equal to:infinityLOGnX:logx to the base nxn:the nth power of xf(x):the function of xdx:diffrencial of xx+y:x plus y(a+b):bracket a plus b bracket closeda=b:a equals bab:a isn't equal to ba>b:a is greate
32、r than ba>>b:a is much greater than bab: a is greater than or equal to b x:x approches infinityx2:x squarex3:x cubex:the square root of x3x:the cube root of x3:three peimillni=1xi:the summation of x where x goes from 1to nni=1xi:the product of x sub i where igoes from 1to nab:integral betweens
33、 a and b(1)数量符号:如 :i,2 i,a,x,自然对数底e,圆周率 。 (2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或),两个集合的并集(),交集(),根号( ),对数(log,lg,ln),比(),微分(d),积分()等。 (3)关系符号:如“=”是等号,“”或“ ”是近似符号,“”是不等号,“”是大于符号,“”是小于符号,“ ”表示变量变化的趋势,“”是相似符号,“”是全等号,“”是平行符号,“”是垂直符号,“”是正比例符号,“”是属于符号等。 (4)结合符号:如圆括号“()”方括号“”,花括号“”括线“” (5)性质符号:如
34、正号“+”,负号“-”,绝对值符号“” (6)省略符号:如三角形(),正弦(sin),X的函数(f(x)),极限(lim),因为(),所以(),总和(),连乘(),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。 符号 意义 无穷大 PI 圆周率 |x| 函数的绝对值 集合并 集合交 大于等于 小于等于 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 小数部分 x - floor(x) f(x)x 不定积分 a:bf(x)x a到b的定积分 P为真等于1否则
35、等于0 1knf(k) 对n进行求和,可以拓广至很多情况 如:n is primen < 10f(n) 1ijnn2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n mn m与n互质 a A a属于集合A #A 集合A中的元素个数大写 小写 英文注音
36、国际音标注音 中文注音 alpha alfa &
37、#160; 阿耳法 beta beta
38、0; 贝塔 gamma gamma 伽马
39、60; deta delta 德耳塔
40、; epsilon epsilon 艾普西隆
41、 zeta zeta 截塔 eta
42、 eta 艾塔 theta
43、0; ita 西塔 iota
44、60; iota 约塔 kappa
45、 kappa 卡帕 lambda &
46、#160; lambda 兰姆达 mu miu
47、 缪 nu
48、 niu 纽 xi
49、160; ksi 可塞 omicron omi
50、kron 奥密可戎 pi pai &
51、#160; 派 rho rou 柔 sigma
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 母婴用品专业代购服务合作协议
- 遗产纠纷调节协议书
- 装修公司结算协议书
- 银行承兑抽屉协议书
- 酒店经营合伙协议书
- 首饰工厂订购协议书
- 乡村党建宣传栏协议书
- 餐厅设备租售协议书
- 跳舞团队免责协议书
- 解除劳务协议协议书
- 转让店铺轮胎协议书
- 2025年辽宁省盘锦市中考数学二模试卷
- 完整版新修订《厉行节约反对浪费条例》(课件)
- 贵州国企招聘2025贵州省水利投资(集团)有限责任公司招聘84人笔试参考题库附带答案详解
- 【8生 会考】2022-2024年安徽省初中(八年级)中考初二会考生物试卷(3年真题)
- 2025年网络与信息安全专业考试试卷及答案
- 2024年河北承德辰飞供电服务有限公司招聘真题
- 沪教版八年级化学(下册)期末试卷及答案
- DL-T-1878-2018燃煤电厂储煤场盘点导则
- 小小科学家《物理》模拟试卷A(附答案)
- 体能科学训练方法智慧树知到期末考试答案2024年
评论
0/150
提交评论