Microelectronics_第1页
Microelectronics_第2页
Microelectronics_第3页
Microelectronics_第4页
Microelectronics_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、IC Manufacturing and YieldGary S. MayApril 15, 2004OutlineMotivationProduction EfficiencynDetermined by actions both on and off the manufacturing floornDesign for manufacturability (DFM): intended to improve production efficiencyHighVolumeManufacturingProcess DesignCircuit DesignOFFONVariabilitynThe

2、 most significant challenge in IC productionnTypes of variability:uhuman erroruequipment failureumaterial non-uniformityusubstrate inhomogeneityulithography spotsDeformationsnVariability leads to = deformationsnTypes of deformations1) Geometric:u lateral (across wafer)uvertical (into substrate)uspot

3、 defectsucrystal defects (vacancies, interstitials)2) Electrical:ulocal (per die)uglobal (per wafer)OutlineStatistical Process ControlControl ChartsControl Chart for AttributesDefect Chart!)(xcexPxcControl Limits for C-ChartccUCL3ccLCL3Control Limits for C-ChartccUCL3ccLCL3cExample48. 12537c13. 53cc

4、UCL17. 23ccLCLDefect Density Chartncu Control Limits for U-ChartnuuUCL/3nuuLCL/3uExample83. 1)5)(20(183mncmuu64. 3/3nuuUCL02. 0/3nuuLCLControl Charts for VariablesControl of Mean and Variancexniinxnnxxxx1211niixxns12)(11Control Limits for MeannxUCL/32xCenter nxLCL/32where the grand average is: mxxxx

5、m21Control Limits for Variance24413ccssUCLsCenter where: and c4 is a constantmiisms1124413ccssLCLModified Control Limits for MeanxncsxUCL43ncsxLCL43ExamplesxxmncsxUCL14. 434mncsxLCL88. 334ExamplemccssUCL19. 013244013244ccssLCLOutlineBackgroundComparing DistributionsHypothesis TestingBApBAnnsyyt11)(0

6、iy2) 1() 1(222BABBAApnnsnsnsResultsAnalysis of VarianceANOVA Example616866614321yyyy64ySums of SquaresktttTyynS12)(ktnitiDtyyS112)(ktnittiRtyyS112)(Degrees of Freedom1 kT1 NDkNRMean SquaresTTTSs/2DDDSs/2RRRSs/2ANOVA Table for Defect DensityConclusions Factorial Designs2-Level Factorials(-1,1,1)(1,1,

7、1)(-1,-1,1)(-1,1,-1)(1,1,-1)(-1,-1,-1)(1,-1,-1)23 Factorial CVD ExperimentMain EffectsInteraction EffectsYates AlgorithmYates ProcedureYates Algorithm IllustrationFractional Factorial DesignsFractional Factorial ExampleOutlineDefinitionsFunctional YieldPoisson ModelnLet: C = # of chips on a wafer, M

8、 = # of defect types nCM = number of unique ways in which M defects can be distributed on C chipsnExample: If there are 3 chips and 3 defect types (such as metal open, metal short, and metal 1 to metal 2 short, for example), then there are:CM = 33 = 27possible ways in which these 3 defects can be di

9、stributed over 3 chipsUnique Fault CombinationsPoisson DerivationnIf one chip contains no defects, the number of ways to distribute M defects among the remaining chips is:(C - 1)MnThus, the probability that a chip will have no defects of any type is:nSubstituting M = CAcD0, yield is # of chips with

10、zero defects, or:nFor N chips to have zero defects this becomes:C1MCM- -11C- -M=)exp(11lim00DACYcDCACc)exp()exp(00DNADAYcNcMurphys Yield Integral0)(0dDDfeYDAcProbability Density FunctionsPoisson Model)exp()(000DAdDDfeYcDAcUniform Density FunctioncADuniformADeYc02210Triangular Density Function20210 c

11、ADtriangularADeYcSeeds Model 00exp1)(DDDDfcADY0lexponentia11Negative Binomial Modelf(D)D/D0 = 3 = 2 = 1Negative Binomial (cont.)01DAYcgammaParametric YieldnEvaluated using “Monte Carlo” simulationu Let all parameters vary at random according to a known distribution (usually normal)uMeasure the distribution in performancenRecall: nOr: IDnsat = f (tox, VTn)2TnGSoxnDnsatVVLWCIInput DistributionsnAssume: mean () and standard deviation () are known for tox, VTnnCalculate IDn

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论