


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、碳化硅陶瓷工艺流程碳化硅(SiC )陶瓷,具有抗氧化性强,耐 磨性能好,硬度高,热稳定性好,高温强度 大,热膨胀系数小,热导率大以及抗热震和 耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、 航天、核能等领域大显身手,日益受到人们 的重视。例如,SiC陶瓷可用作各类轴承、 滚珠、喷嘴、密封件、切削工具、燃汽涡轮 机叶片、涡轮增压器转子、反射屏和火箭燃 烧室内衬等等。SiC陶瓷的优异性能与其独特结构密切相 关oSiC是共价键很强的化合物,SiC中Si-C 键的离子性仅12 %左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯 SiC 不会被 HCl 、 HNO3 、H2SO4 和
2、 HF 等 酸溶液以及 NaOH 等碱溶液侵蚀。 在空气中 加热时易发生氧化,但氧化时表面形成的 SiO2 会抑制氧的进一步扩散,故氧化速率 并不高。在电性能方面, SiC 具有半导体性, 少量杂质的引入会表现出良好的导电性。 此 外, SiC 还有优良的导热性。SiC具有a和B两种晶型SiC的晶 体结分别组成面心立方晶格; C 和 Si 构为立 方晶系,a SiC 存在着 4H 、15R 和 6H 等 100 余 种多型体,其中, 6H 多型体为工业应用上 最为普遍的一种。 在 SiC 的多种型体之间存 在着一定的热稳定性关系。在温度低于 1600 C时,SiC以 3 - SiC形式存在。当
3、高于1600 C时,3- SiC缓慢转变成a- SiC的各种多型体。4H SiC在2000 C左右容易生成;15R和6H 多型体均需在2100 C以上的高温才易生成; 对于6H SiC,即使温度超过 2200 C,也 是非常稳定的。SiC中各种多型体之间的自 由能相差很小,因此,微量杂质的固溶也会 引起多型体之间的热稳定关系变化。现就 SiC 陶瓷的生产工艺简述如下: 一、 SiC 粉末的合成:SiC 在地球上几乎不存在,仅在陨石中有 所发现,因此,工业上应用的 SiC 粉末都为 人工合成。目前,合成 SiC 粉末的主要方法 有:法: Acheson 、 1 这是工业上采用最多的合成方法, 即
4、用电 将石英砂和焦炭的混合物加热至2500 C左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量 杂质。其中,杂质少的呈绿色,杂质多的呈 黑色。2、化合法:在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的BSiC粉末。3、热分解法:使聚碳硅烷或三氯甲基硅等有机硅聚合物在12001500 °C的温度范围内发生分解 反应,由此制得亚微米级的一 SiC粉末。4、气相反相法:使 SiCl4 和 SiH4 等含硅的气体以及 CH4、 等含碳的气体或使 Cl4 和( C7H8 、C3H8 CH3SiCl3 、(CH3 )2 SiCl2 和 S
5、i(CH3 )4 等同时含有硅和碳的气体在高温下发生反 应,由此制备纳米级的B SiC超细粉。二、碳化硅陶瓷的烧结1、无压烧结1974年美国GE公司通过在高纯度B SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020 C成功地获得高密度 SiC陶瓷。目前,该工艺已成为制备SiC陶 瓷的主要方法。美国 GE 公司研究者认为: 晶界能与表面能之比小于 1 732 是致密化 的热力学条件,当同时添加B和C后,B固 溶到 SiC 中,使晶界能降低, C 把 SiC 粒子 表面的 SiO2 还原除去,提高表面能,因此 B 和 C 的添加为 SiC 的致密化创造了热力学 方面的有利条件。然而,日
6、本研究人员却认 为 SiC 的致密并不存在热力学方面的限制。 还有学者认为, SiC 的致密化机理可能是液 相烧SiC B的C和B结,他们发现:在同 时添加烧结体中, 有富 B 的液相存在于晶界处。 关 于无压烧结机理,目前尚无定论。以a SiC为原料,同时添加 B和C,也 同样可实现SiC的致密烧结。研究表明:单独使用 B和C作添加剂, 无助于SiC陶瓷充分致密。只有同时添加B 和C时,才能实现SiC陶瓷的高密度化。为 了 SiC的致密烧结,SiC粉料的比表面积应 在10m2 /g以上,且氧含量尽可能低。B的添加量在0. 5 %左右,C的添加量取决于SiC 原料中氧含量高低, 通常 C 的添
7、加量与 SiC 粉料中的氧含量成正比。最近,有研究者在亚微米 SiC 粉料中加入 AI2O3 和 Y2O3,在 1850 C 2000 °C 温度 下实现 SiC 的致密烧结。 由于烧结温度低而 具有明显细化的微观结构,因而,其强度和 韧性大大改善。2 、热压烧结50 年代中期,美国 Norton 公司就开始研 究 B、Ni、Cr、Fe、 AI 等金属添加物对 SiC 热压烧结的影响。实验表明: AI 和 Fe 是促 进 SiC 热压致密化的最有效的添加剂。有研究者以AI2O3为添加剂,通过热压烧 结工艺,也实现了 SiC的致密化,并认为其 机理是液相烧结。此外,还有研究者分别以 B
8、4C、B 或 B 与 C,AI2O3 和 C、AI2O3 和 Y2O3、Be、B4C与C作添加剂,采用热压 烧结,也都获得了致密 SiC陶瓷。研究表明:烧结体的显微结构以及力学、 热学等性能会因添加剂的种类不同而异。 如: 当采用 B 或 B 的化合物为添加剂, 热压 SiC 的晶粒尺寸较小,但强度高。当选用 Be 作 添加剂,热压 SiC 陶瓷具有较高的导热系数。3、热等静压烧结:近年来, 为进一步提高 SiC 陶瓷的力学性 能,陶瓷的热等静压工艺的研 SiC 研究人员 进行了究工作。研究人员以 B 和 C 为添加剂,采 用热等静压烧结工艺,在 1900 C便获得高 密度 SiC 烧结体。更
9、进一步,通过该工艺, 在2000 C和138MPa压力下,成功实现无添加剂 SiC陶 瓷的致密烧结。研究表明:当SiC粉末的粒径小于 0. 6 卩m时,即使不引入任何添加剂,通过热等 静压烧结,在1950 C即可使其致密化。如 选用比表面积为24m2 /g的SiC超细粉, 采用热等静压烧结工艺,在 1850 C便可获 得高致密度的无添加剂 SiC陶瓷。另外,AI2O3是热等静压烧结SiC陶瓷的 有效添加剂。 而 C 的添加对 SiC 陶瓷的热等 静压烧结致密化不起作用, 过量的 C 甚至会 抑制 SiC 陶瓷的烧结。4、反应烧结:SiC 的反应烧结法最早在美国研究成功。反应粉和石墨粉按 SiC
10、 a烧结的工艺过程 为:先将比例混匀,经干压、挤压或注浆等方法制成 多孔坯体。在高温下与液态 Si 接触,坯体 中的C与渗入的Si反应,生成B SiC,并 与a SiC相结合,过量的Si填充于气孔,从而得到无 孔致密的反应烧结体。反应烧结SiC通常含 有8 %的游离Si。因此,为保证渗Si的完全, 素坯应具有足够的孔隙度。一般通过调整最初混合料中a SiC和C的含量,a SiC 的粒度级配,C的形状和粒度以及成型压力 等手段来获得适当的素坯密度。实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的 SiC陶瓷具有各异的性能特点。 如就烧结密度和抗弯强度来说, 热压烧结和热等静压烧结 Si
11、C 陶瓷相对较多, 反应烧结 SiC 相对较低。另一方面, SiC 陶 瓷的力学性能还随烧结添加剂的不同而不 同。无压烧结、热压烧结和反应烧结 SiC 陶 瓷对强酸、强碱具有良好的抵抗力,但反应 烧结 SiC 陶瓷对 HF 等超强酸的抗蚀性较差。 就耐高温性能比较来看,当温度低于900 C时,几乎所有 SiC 陶瓷强度均有所提陶瓷 SiC C时,反应烧结1400高;当温度超过.(这是由于烧结体中含有一抗弯强度急剧 下降。,当超过一定温度抗弯强度急剧 Si 定 量的游离 SiC 对于无压烧结和热等静压烧 结的下降所致)陶瓷,其耐高温性能主要受添加剂种类的 影响。陶瓷SiCSiC陶瓷的性能因烧结方
12、法不同而不同。一般说来,无压烧结总之,SiC陶瓷,但次于热压烧结和热等静压烧结的的综合性能优于反应烧结的SiC陶瓷。辛吕氧化的用主要用产品名主要品联合法氢氧化氟化盐、净水普通氢氧化拜尔法氢氧化氟化盐、净水剂、活性氧化 白色氢氧化阻燃剂、填超白氢氧化人造玛瑙、人造特种氢氧化电缆、化妆品、纸张填超细氢氧化低铁氢氧化特种玻璃、人造玛低钠氢氧化催化剂载活性氧化铝微耐火材料结合活性氧化催化剂、干燥剂、净化柱状活性氧化球状活性氧化催化剂、干燥剂、吸附剂高纯氧化铝 钠灯管、荧光粉高纯氧化铝 低钠咼温氧化铝电子陶瓷、精细陶瓷中钠高温氧化铝 结构陶瓷低钠高温氧化铝超细 高温氧化铝 电子陶瓷、精细陶 瓷、耐火材料
13、微粉中钠高温氧化铝超细结构陶瓷、耐火材料微粉.抛光研磨氧化铝不锈钢抛光研磨高压开关环氧树脂绝缘件填料电工氧化铝催化剂、粘结剂 普通拟薄水铝石 拟薄水铝石催化剂、粘结剂特种拟薄水铝石洗涤助沸4沸催化10沸氟化铝酸钠溶铝酸固体铝酸催化剂、凝聚纯铝酸钙水纯 铝酸钙水耐火材料结合研磨介结构陶氧化铝陶机械零精细陶陶瓷原料主要来自岩石,而岩石大体都是由硅和铝构成的。陶瓷也是用这类岩石作原料,经过人工加热使 之坚固,很类似火成岩的生成。因此从化学上来说,陶瓷的成分与岩石的成分没有什么大的区别。如果是 硅和铝所构成的陶瓷,其主要原料有以下几种:1、石英一一化学成分是纯粹的二氧化硅( SiO2),又名硅石。这种
14、矿物即使碎成细粉也无粘性,可用来弥补陶瓷原料过粘的缺点。在 780 C以上时便不稳定而变成鳞石英,在1730 C时开始熔融。2、长石一一是以二氧化硅及氧化铝为主,又夹杂钠、钾、钙等的化合物。因其所含分量多寡不同,又有许 多种类。一般有将含长石较多的岩石叫作长石的,也有以它的产地来命名的。现在把长石中具有代表性的 几种和它们的成分列于表 1。其中前三种是纯粹的理论成分,后一类则含有岩石中所有的不纯物质。钠长石与钙长石以各种比例互相熔解,变成多种多样的长石。这些总称为“斜长石”,它的性质依其中所含钠长石与钙长石的比例而定。还有一种和正长石(钾长石)为同样成分而形状稍有变异的,至今也多误传 为正长石
15、,其实这种应该叫做“微斜长石”。3、瓷土(又名“高岭土” )一一瓷土( H4AI2Si2O9)是陶瓷的主要原料。它是以产于世界第一窑厂的中国 景德镇附近的高岭而得名的。后来由“高岭”的中国音演变为“Kaolin ”,而成为国际性的名词。纯粹的瓷土是一种白色或灰白色,有丝绢般光泽的软质矿物。瓷土是由云母和长石变质,其中的钠、钾、钙、铁等流失,加上水变化而成的,这种作用叫作“瓷土化”或“高岭土化”。至于瓷土化究竟因何而起,在学术界中虽然还没有定论,但大略可以认为是长石类由于温 泉或含有碳酸气的水以及沼地植物腐化时所生的气体起作用变质而成1780 C左右,瓷土的熔点约在可能就是这个原因。的。一般瓷土
16、多产于温泉附近或石灰层周围,实际上因为多少含有不纯物质,所以它的熔点略为降低。纯粹的瓷土(高岭土)存量不多,而且所谓纯粹的瓷土,也没有黏土那样强的粘度。一般所说的瓷土如果 放在显微镜下面来观察,大部分带有白色丝绢状的光泽,银光闪闪,是非常小的结晶,这就是所谓纯粹的 瓷土。此外,还含有未变质的长石、石英、铁矿及其他作为瓷土来源的岩石的碎片。纯粹瓷土的成分是: SiO2 46.51%,AI2O3 39.54%,H2O 13.95%,熔度为 1780Co陶瓷中最高级的是瓷器。作瓷器用的岩石究竟以哪样最好?由于瓷器必须是白色。因而就不得不极力避免含有使陶瓷着色的铁分。含铁少而以氧化硅及氧化铝为主要成分
17、的岩石有:花岗岩、花岗斑岩、石英斑岩、 石英粗面岩以及由这类岩石分崩而成的水成岩等。这里所说的花岗石乃至石英粗面岩 (即在火成岩中也算是含有氧化硅及氧化铝特别多而铁分子少的) ,都是 以石英、长石为主,并含有若干云母及富于铁分(氧化铁)的黑绿或黑褐色的矿物。假若仔细观察这些岩 石,便可看到许多像玻璃一般透明的颗粒和像瓷器一样鲜艳的白色或淡红色的颗粒。前者是石英、后者是 长石。这四种岩石的化学成分虽然相同,但因为长石与石英等颗粒的大小不同,因而形成了不同的岩石。 花岗岩全体是由比较大的颗粒(直径 17 毫米)构成的。石英粗面岩是在看不见颗粒的致密素地中有石英 及长石的小粒存在。花岗斑岩及石英斑岩则介乎此二者之间,是在致密的素地内含有大粒的石英。这类岩 石构造上的差异,主要在于由熔融的岩浆到冷固的时间长短,其中花岗岩最长,石英粗面岩最短,而花岗 斑岩与石英斑岩则是在介乎两者间的时间内冷固的。 陶瓷是以岩石作原料, 而所以未能具有岩石般的颗粒, 其主要原因是,陶瓷原料不像岩石那样在高温下完全熔化,同时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年六年级下学期数学三 《反比例》教案
- 2025年婚前协议书正确模板
- 人教版八年级上册 历史与社会 教学设计 1.2中华早期国家与社会变革
- (高清版)DB45∕T 566-2020 汽车旅游营地星级划分
- 2025年衡水健康科技职业学院单招职业适应性测试题库审定版
- 2025年河南工业贸易职业学院单招职业技能测试题库1套
- 期中综合练习-三年级数学下册(含答案)北师大版
- 2024年多媒体电脑超声诊断仪项目资金筹措计划书代可行性研究报告
- 2025年黑龙江省伊春市单招职业倾向性测试题库1套
- 语文-四川省金太阳2025届高三2月开学考试试题和答案
- 公司组织架构图模板完整版可编辑 10
- 《护理法律法规》课件
- AI在知识库领域的应用
- 易制毒化学品经营管理制度
- 2024年中国成人心肌炎临床诊断与治疗指南解读课件
- 全国川教版信息技术八年级下册第一单元第2节《制作创意挂件》信息技术教学设计
- GB/T 22919.8-2024水产配合饲料第8部分:巴沙鱼配合饲料
- 网络营销推广与策划教学大纲
- 北师大版五年级数学下册教材分析解读课件完整版
- 孩子你是在为自己读书
- 施工现场场容场貌
评论
0/150
提交评论