版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、15.1 交互式零知识证明系统的定义交互式零知识证明系统的定义 l交互图灵机作为证明者和验证者各自的计交互图灵机作为证明者和验证者各自的计算模型,将他们各自的交互图灵机连接起算模型,将他们各自的交互图灵机连接起来联合计算就构成一问一答的交互协议。来联合计算就构成一问一答的交互协议。 l定义定义15.1 一个交互图灵机是一个(确定性)多带图灵机。它具有下列带:1)一条只读输入带;2)一条只读随机带;3)一条读写工作带;4)一条只写输出带;5)一条只读通信带和一条只写通信带;6)一条仅有一个小方格的读写开关带。 l 定义定义 15.2 二个交互图灵机连接在一起,若一个图灵机的识别标记为1而另一个图
2、灵机的识别标记为0,它们的输入带合一,开关带合一,一个图灵机的只读通信带与另一图灵机的只写通信带合一,反之前者的只写通信带与后者的只读通信带合一,但两个图灵机的随机带,工作带和输出带是分开的。一对连接起来的交互图灵机在初始时刻有共同的输入,并置开关带的内容为0。它们的联合计算程序是一对形的有限或无限序列,其中一个形序列代表一个图灵机的计算程序。序列中的每一对形总是有一个图灵机(不必是同一个)工作而另一个图灵机休息。第一对形对应于图灵机的初始状态,共同输入和开关带的内容0。若一个图灵机停机了但开关带的内容仍与它的识别标记相等,称这时两个图灵机都已停机了,即计算在这一时刻终止。两个图灵机的输出由这
3、一时刻输出带的内容决定。 l 定义定义15.3 设A,B为连接起来的一对交互图灵机,设对每一共同输入,它们的联合计算在有限步终止。记(A,B)(x)为共同输入x联合计算终止时B的输出。它是在0,1中取值的随机变量,即在联合计算终止时刻图灵机B的只写头在输出带所写的二进数。由于A,B的随机输入满足随机数约定,故(A,B)(x)为随机变量。l 定义定义15.4 一个交互图灵机A称为有时间复杂性 (正整数集),若它与每个交互图灵机B连接起来和对每个共同输入x,它总是在t(|x|)步内停机(与A和B的随机输入无关,只要满足随机数约定即可)。特别若存在一个正多项式p(n),使图灵机A有时间复杂性p(|x
4、|),则称图灵机A是多项式时间的。 ZZt :l 定义定义15.5 一对连接起来的交互图灵机(P,V)称为语言L成员识别问题的交互(式省去)证明系统,若V是多项式时间的,且满足下列两个条件。(1)完全性:对每个xL, (15.1)(2)合理性:对每个xL和每个交互图灵机B,B与V连接起来, 或 (15.2)l 其中V的输出(P,V)(x)和(B,V)(x)表示验证者是否接受xL,输出1表示接受xL,输出0表示拒绝xL。 3/21)(VP(Prx),3/20)(VB(Prx),3/11)(VB(Prx),l定理定理15.1 语言L的成员识别问题属于NP,当且仅当它有一个交互证明系统具有下列两个性
5、质。(1)交互是单向的(从证明者到验证者)。(2)证明者和验证者都只用确定性算法(不出错)。 l 定义定义15.6 设(P,V)为语言L的交互证明系统(参看定义15.5),称(P,V)为语言L的一个关于不诚实验证者的交互完全零知识证明系统,若对每个多项式时间的交互图灵机V*,存在一个多项式时间的概率图灵机M*,使对每个xL,下面两个条件成立。1)当M*的输入为x时,它以2-p(|x|)的概率输出一个特殊符号,记作,即,其中p(n)为任一固定的正多项式。2)记m*(x)为一随机变量,其分布为M*(x) 的条件下M*(x)的条件分布,即再记ViewP,V(x)为共同输入x时在P与V*交互(联合计算
6、)过程中从V*的随机带读出的随机数以及V*从P收到的消息,称为V*的观察。于是有ViewP,V(x)与m*(x)是相同分布的随机变量。M*称为P与V*交互的完善模拟器。 |)(|*2)(MPrxpx *10)(M|)(MPr)(Pr,xxxml定义定义15.7 设(P,V)为语言L的交互证明系统,称(P,V)为语言L的一个关于不诚实验证者的交互计算零知识证明系统,若对每个多项式时间的交互图灵机V*,存在一个多项式时间的概率图灵机M*,使随机变量族 与 是计算不可区分的(参看定义6.2)。M*称为P与V*交互的模拟器。 LV,P)(*xxViewL*)(Mxxl 定义定义15.8 设(P,V)为
7、语言L的交互证明系统,称(P,V)为语言L的一个关于不诚实验证者的交互统计(几乎完全)零知识证明系统,若对每个多项式时间的交互图灵机V*,存在一个多项式时间的概率图灵机M*,使随机变量族 与是统计接近的,即它们的变差距离(15.3)是|x|的一个可忽略函数,即对每个正多项式p(n)及一切充分大的|x|有。 LV,P)(*xxViewL*)(Mxx*1 , 0*V,PL,)(MPr)(Pr21)(xxxViewx|)(|/1)(xpx l定义定义15.9 设(P,V)为语言L的交互证明系统,称(P,V)为语言L的一个关于诚实验证者的交互计算零知识证明系统,若存在一个多项式时间概率图灵机M,使随机
8、变量族 与 是计算不可区分的(参看定义6.2)。 LV,P)(xxViewL)(Mxx15.2 交互零知识证明系统的构造交互零知识证明系统的构造 l (一)无向图的同构问题l 1. 共同输入为两个同构的图G1=(V1,E1)和G2=(V2,E2)。设为G1到G2的同构,即为从V1到V2的1-1映射,使(u,v) E1,当且仅当 。l 2. 重复执行下列36步n次。l 3. P按等概分布随机选择V2的一个置换并构造图G=(V,E),其中,();。P将G=(V,E)发给V。l 4. V收到P发送的图G=(V,E)后,按等概分布随机选择一个1,2,V将发送给P,要求P给出到G的同构。l 5. 若P收
9、到V发送的,则P将发送给V,否则,即2,则P将发送给V。l 6. 若V收到P发送的消息,记作,是G到G的同构,则V输出1(接受),否则V输出0(拒绝)。2E)(),(vu()(,),(),(V|V|212uuu|V|2122.,Vuuu2E),(),(),(Evuvu)V),()(1uuul 定理定理15.2 上面给出的程序GI是语言GI的一个关于不诚实验证者的交互完全零知识证明系统。更确切地说,它满足下列性质。1)若x=(G1,G2)GI(G1与G2同构),则即验证者总是接受x GI。2)若x=(G1,G2)GI(G1与G2不同构),则对每个交互图灵机B即对每一个可能的证明者B与V交互,验证
10、者仍用V的程序4和6,则验证者拒绝xGI的概率至少是1/2。3)对每个多项式时间的交互图灵机V*,存在一个多项式时间的概率图灵机M*,当输入x=(G1,G2)GI时, 与m*(x)是相同分布的随机变量(参看定义15.6),其中,证明者仍用P的程序3和5。 11)(V,P(Prx2/10)(V,B(Prx)(*V,PxView(二)二次剩余问题 l 1. 共同输入为N,x,其中N为未知因子分解的N=PQ,P,Q为素数,x与N互素,xQR(N)l 2. 重复执行3-6步logN次(N看作二进数表示)。l 3. P按等概分布从ZN*中随机选出一个v,计算y=v2(mod N),P将y发送给V。l 4
11、. V 收到P发送的y后,按等概分布随机选择一个0,1,V将发送给P。l 5. P收到V发送的后,计算,其中u为x的一个模N的平方根,P将z发送给V。l 6. 若V收到P发送的z满足 ,则V输出1(接受),否则V输出0(拒绝)。 )(modNvuz)(mod2Nyxzl 定理定理15.3 上面给出的程序QR是语言QR的一个关于不诚实验证者的交互完全零知识证明系统。更确切地说,它满足下列性质。1)若 xQR(N),则2)若 xQR(N),则对每个交互图灵机B或3)对每个多项式时间的交互图灵机V*,存在一个多项式时间的概率图灵机M*,当输入xQR(N)时, 与m*(x)是相同分布的随机变量,其中,
12、证明者仍用P的程序3和5。 11)(V,P(Prx2/10)(V,B(Prx2/11)(VP(Prx),)(*V,PxView(三)子群成员问题 l 1.共同输入为(N,l,),其中,ZN*, , 的阶为l。l 2.重复执行36步logN次(N看作二进数表示)。l 3.P按等概分布从o,1,l-1中随机选出一个j,计算r= j (mod N),P将r发送给V。l 4.V收到P发送的r后,按等概分布随机选择一个0,1,V将发送给P。l 5.P收到V发送的后,计算h=j+ m(mod N),其中m=log (的以为底的离散对数),P将h发送给V。l 6.若V收到P发送的h满足 ,则V输出1(接受)
13、,否则V输出0(拒绝)。 )(modNrhl定理定理15.4 上面给出的程序SM是语言SM的一个关于不诚实验证者的交互完全零知识证明系统。 NP完全类问题的交互零知识证明系统图的3-着色问题 l 1. 共同输入为一可3-着色的图G=(V,E)。l 2. 重复执行下列36步|E|2次。l 3. 设为图G的一个3-着色。P按等概分布随机选择1,2,3的一个置换,并构造,即为图G的一个随机3-着色(颜色的标记1,2,3是随机的)。P用|V|个保险箱,每个保险箱里放一个(u),uV,将所有|V|个保险箱都发送给V(验证者)。l 4. V(验证者)按等概分布从E中随机选出一条边(u,v),将它发送给P,
14、要求检查u和v的着色。l 5. P收到V发送的(u,v)后,将放有(u)和(v)的两个保险箱的密码发送给V。l 6. V打开这两个保险箱,若他看到的是1,2,3中两个不同的数,则V输出1(接受),否则V输出0(拒绝)。 V),()(uuu15.3 非交互零知识证明系统理论非交互零知识证明系统理论 l 定义定义15.10 一对概率图灵机(P,V)称为语言L的非交互证明系统,若V是多项式时间的,且满足下列两个条件。l 1)完全性:对每个xL, (15.4)l 其中,x为(P,V)的共同输入;R为(P,V)的共同参考序列,它是在0,1p(|x|)中等概分布的随机序列,p(n)为任一固定的正多项式;P
15、(x,R)为P发送给V的消息(P的输出和V的输入)。l 2)合理性:对每个L和每个交互图灵机B或 (15.5)l 其中, 表示验证者接受L, 表示验证者拒绝L。 3/21),(P,(VPrRxRx3/20),(B,(VPrRxRx3/11),(B,(VPrRxRx1),(B,(VRxRx0),(B,(VRxRxl定义定义15.11 一个语言L的非交互证明系统(P,V)称为是计算零知识的,若存在一正多项式p(n)和一个多项式时间概率图灵机M,使随机变量族与 是计算不可区分的。 L|)(|)(|),(P,(xxpxpUxUxL)(Mxxl 定义定义15.12 一对概率图灵机(P,V)称为语言L的隐
16、比特证明系统,若V是多项式时间的,且满足下列两个条件。1)完全性:对每个xL,其中, 为P发送给V的消息(P的输出和V的输入),Cer称为证明书, 为的指定位置集,称为泄漏的比特位置集,x为(P,V)的共同输入,R=r1,rt是在0,1p(|x|)中等概分布的随机序列,为R在指定位置集I上的子序列,称为泄漏的比特序列。2)合理性:对每个xL和每个概率图灵机B或其中, 是B发送给V的消息(B的输出和V的输入)。 3/21),(VPrCerIRxI),(P),(RxCerI|)(|, 2 , 1,1xpiiIiiIrrR13/20),(VPrCerIRxI3/11),(VPrCerIRxI),(B
17、),(RxCerIl定义定义15.13 一个语言L的隐比特证明系统(P,V)称为是计算零知识的,若存在一个多项式时间概率图灵机M,使随机变量族与 是计算不可区分的。 LL),(),(P,(xIxICerIRxRxRxL)(Mxx构造一个语言L的非交互证明系统(P,V) l 1. 共同输入x0,1n。l 2. 共同参考序列为s=s1,sm,其中每个si0,1n。l 3. 证明者(记作P)的程序。1)对每个i1,m,计算。2)向P要。3)输出 (P 发送给V的消息),其中, ,。l 4. 验证者(记作V)的程序1) 输入P输出的 后,对每个ijI,检验 是否成立。若发现有一个不成立,则V停止和拒绝
18、。2) 计算,记。3) 向V要输出作为V的输出,即V接受当且仅当V接受。 )(1iisfbr),(),(P1CerIrrxm),(IpCerIiiI,1)ppsfsfpiiI111()()(1),(IpCerI)(jipfsj, 1),(ipbrii),(1rrr),(VCerIrx语言HC的隐比特零知识证明系统l 1. 共同输入= G=(V,E)HC,其中|V|=n。l 2. 共同参考序列看作一个n3n3矩阵M,其元素为1的概率为n-5,元素为0的概率为1-n-5。l 3. 证明者(记作P)的程序。设C为G中的一个哈密尔顿圈。1) 证明者考察矩阵M,分如下两种情况。l 情况一:M为有用。记H为M中的哈密
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质量检测合同模板
- 2024年度平房区环境整治:建筑施工合同范本
- 开发商授权拆迁补偿合同
- 2024年住家保姆工作协议
- 劳务协议书样式
- 简单工程承包协议范例
- 2024标准临时用工合同样本
- 2024年苏州市租房合同范本
- 拼车服务协议示例
- 2024中介的买卖合同书范文
- 初中语文人教七年级上册要拿我当一挺机关枪使用
- 北京颂歌原版五线谱钢琴谱正谱乐谱
- 病史采集和临床检查方法
- PSUR模板仅供参考
- 火力发电企业作业活动风险分级管控清单(参考)
- 民法典合同编之保证合同实务解读PPT
- 全国第四轮学科评估PPT幻灯片课件(PPT 24页)
- 大气污染控制工程课程设计-某厂酸洗硫酸烟雾治理设施设计
- 名牌包包网红主播电商直播带货话术脚本
- 高考语文作文素材人物速递——苏炳添课件18张
- 蛋鸡养殖场管理制度管理办法
评论
0/150
提交评论