一元二次方程解法综合练习(课堂PPT)_第1页
一元二次方程解法综合练习(课堂PPT)_第2页
一元二次方程解法综合练习(课堂PPT)_第3页
一元二次方程解法综合练习(课堂PPT)_第4页
一元二次方程解法综合练习(课堂PPT)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 21-2.4 21-2.4 解一元二次方程解一元二次方程 一元二次方程解法一元二次方程解法综合练习课综合练习课教材导读教材导读练习展示练习展示拓展延伸拓展延伸情景导课情景导课反思小结反思小结测评反馈测评反馈2学习难点:学习难点:学习重点学习重点:阅读教材第阅读教材第14页至页至14页,明确学习目标页,明确学习目标学习目标:学习目标:1、会根据具体方程的特征,灵活选择解法并准确求解一元二次、会根据具体方程的特征,灵活选择解法并准确求解一元二次方程;方程;2、在灵活选择解法求解一元二次方程的过程中体会转化、降次、在灵活选择解法求解一元二次方程的过程中体会转化、降次的数学思想的数学思想灵活选择解

2、法并准确求解一元二次方程灵活选择解法并准确求解一元二次方程灵活选择解法并准确求解一元二次方程灵活选择解法并准确求解一元二次方程3你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法? ?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗? ?情景导课情景导课4方程的左边是完全平方式方程的左边是完全平方式, ,右边是非右边是非负数负数; ;即形如即形如x x2 2=a=a(a0)(a0) 1212xa,xaxa,xa情景导课情景导课51. 1.化化1: 1:把二次项系数化为把二次项系数化为1 1; ;2.2.移项移项: :把常数项

3、移到方程的右边把常数项移到方程的右边; ;3.3.配方配方: :方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方; ;4.4.变形变形: :化成化成5.5.开平方开平方,求解求解( (x xm m ) )a a+ += =2 2“配方法配方法”解方程的基本步骤解方程的基本步骤一除、二移、三配、四化、五解一除、二移、三配、四化、五解. .情景导课情景导课6用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是: :1. 1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程: : ax ax2 2+bx+c=0(a0).+bx+c=0(a0). 2.b2.b2 2-

4、4ac0.-4ac0. .0 04ac4acb b. .2a2a4ac4acb bb bx x2 22 2情景导课情景导课71.1.用因式分解法的用因式分解法的条件条件是是: :方程左边能够方程左边能够 分解分解, ,而右边等于零而右边等于零; ;2.2.理论理论依据依据是是: :如果两个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于零那么至少有一个因式等于零. .因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤: :一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解; ;三化三化-方程化为两个一元一次方程方程化为两个一元

5、一次方程; ;四解四解-写出方程两个解写出方程两个解; ;情景导课情景导课8请用四种方法解下列方程请用四种方法解下列方程: : 4(x 4(x1)1)2 2 = (2x= (2x5)5)2 2先考虑开平方法先考虑开平方法, ,再用因式分解法再用因式分解法; ;最后才用公式法和配方法最后才用公式法和配方法; ;练习展示练习展示93.3.公式法公式法:221.222.530按按要要求求解解下下列列方方程程:因因式式分分解解法法: 3 3配配方方法法: 2 2xx xxx 2112112 2xxyyy总结:方程中有括号时,应总结:方程中有括号时,应先用整体思想先用整体思想考虑有没考虑有没有简单方法,

6、若看不出合适的方法时,则把它去括有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。号并整理为一般形式再选取合理的方法。练习展示练习展示10 x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2) 5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2) (x-2)2 2=2(x-2)=2(x-2) 适合运用直接开平方法适合运用直接开平方法 ; 适合

7、运用因式分解法适合运用因式分解法 ; 适合运用公式法适合运用公式法 ; 适合运用配方法适合运用配方法 . . 练习展示练习展示11 一般地,当一元二次方程一次项系数为一般地,当一元二次方程一次项系数为0 0时时(axax2 2+c=0+c=0),应选用),应选用直接开平方法直接开平方法;若常数项为若常数项为0 0( axax2 2+bx=0+bx=0),应选用),应选用因式分解法;因式分解法;若一次项系数和常数项都不为若一次项系数和常数项都不为0 (0 (axax2 2+bx+c=0+bx+c=0),),先化为一般式,看一边的整式是否容易因式分解,先化为一般式,看一边的整式是否容易因式分解,若

8、容易,宜选用因式分解法,不然选用若容易,宜选用因式分解法,不然选用公式法公式法;不过当二次项系数是不过当二次项系数是1 1,且一次项系数是偶数时,且一次项系数是偶数时,用配方法也较简单。用配方法也较简单。我的发现练习展示练习展示12用最好的方法求解下列方程用最好的方法求解下列方程1)1)(3x-23x-2)-49=0 -49=0 2)2)(3x-43x-4) = =(4x-34x-3) 3) 4y=13) 4y=1 y y32练习展示练习展示13选用适当的方法解一元二次方程选用适当的方法解一元二次方程1、解一元二次方程的方法有:、解一元二次方程的方法有: 因式分解法因式分解法 直接开平方法直接

9、开平方法 公式法公式法 配方法配方法 5x5x2 2-3 x=0 -3 x=0 3x 3x2 2-2=0 -2=0 x x2 2-4x=6 -4x=6 2x 2x2 2-x-3=0-x-3=0 2x 2x2 2+7x-7=0+7x-7=0 22、给下列方程选择较简便的方法、给下列方程选择较简便的方法(运用因式分解法)(运用因式分解法)(运用直接开平方法)(运用直接开平方法)(运用配方法)(运用配方法)(运用公式法)(运用公式法)(运用公式法)(运用公式法)(方程一边是(方程一边是0,另一边整式容易因式分解),另一边整式容易因式分解)( ( )( )2 2=C C0=C C0 )(化方程为一般式

10、)化方程为一般式)(二次项系数为(二次项系数为1,而一次项系为偶数),而一次项系为偶数)练习展示练习展示14 公式法公式法 虽然是万能的,对任何一元二次方程都适虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用考虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等等简单方法,若不行,再考虑公式法(适当也可考虑配简单方法,若不行,再考虑公式法(适当也可考虑配方法)方法)2、用适当方法解下列方程、用适当方法解下列方程 -5x-5x2 2-7x+6=0-7x+6=0 2x 2x2 2+7x-4=0

11、+7x-4=0 4(t+2 ) 4(t+2 )2 2=3=3 x x2 2+2x-9999=0+2x-9999=0 (5 5) 3t(t+2)=2(t+2)3t(t+2)=2(t+2)3练习展示练习展示15小小 结结ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2、公式法虽然是万能的,对任何一元二次方程都适用,但不、公式法虽然是万能的,对任何一元二次方程都适用,但不一定一定 是最简单的,因此在解方程时我们首先考虑能否应用是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单方

12、法,若不行,等简单方法,若不行,再考虑公式法(适当也可考虑配方法)再考虑公式法(适当也可考虑配方法)3、方程中有括号时,应先用、方程中有括号时,应先用整体思想整体思想考虑有没有简单方法,若考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。合理的方法。1、直接开平方法直接开平方法因式分解法因式分解法练习展示练习展示16选择适当的方法解下列方程选择适当的方法解下列方程: : x x2 22 21 1) )1 1) )( (x x( (x x8 81 1) )( (3 3x x1 1) )( (2 2x x7

13、 78 84 49 97 7) )x x( (2 2x x6 6 2 2x x7 7) )x x( (3 3x x5 59 9x x2 2) )( (x x4 4 4 4x x1 13 3x x3 32 2x x5 5x x2 2 1 1x x2 25 51 16 61 12 22 22 22 22 22 22 2练习展示练习展示17练习展示练习展示解:解:18【方法一点通方法一点通】解一元二次方程的方法选择解一元二次方程的方法选择1 1、若方程为、若方程为x x2 2=n=n或者或者(x+m)(x+m)2 2=n(n0)=n(n0)型时型时, ,用直接开平方法用直接开平方法. .2 2、若方

14、程、若方程( (或者变形后或者变形后) )右边为右边为0,0,左边能因式分解时左边能因式分解时, ,用因式用因式分解法分解法. .3 3、若方程右边为、若方程右边为0,0,左边不能因式分解时左边不能因式分解时, ,选用公式法选用公式法. .4 4、若无特殊说明、若无特殊说明, ,一般不用配方法一般不用配方法. .反思小结反思小结19配方法配方法公式法公式法因式分解法因式分解法将二将二次方次方程化程化为一为一元方元方程程降次降次先配方,再降次先配方,再降次直接利用求根公式直接利用求根公式先使方程一边化为两先使方程一边化为两个一次因式相乘,另个一次因式相乘,另一边为一边为0,再分别使,再分别使各一

15、次因式等于各一次因式等于0所有一元所有一元二次方程二次方程所有一元所有一元二次方程二次方程某些某些知识要点知识要点反思小结反思小结20课堂小结反思小结反思小结21【例例 2】 用适当方用适当方法解下列方程:法解下列方程:(2)x26x190;(3)3x24x1;(4)y2152y;(5)5x(x3)(x3)(x1)0;(6)4(3x1)225(x2)2.测评反馈测评反馈22思路点拨:思路点拨:四种方法的选择顺序是:直接开平方法四种方法的选择顺序是:直接开平方法因式因式分解法分解法公式法公式法配方法配方法测评反馈测评反馈23(3)移项,得 3x24x10.a3,b4,c1,(4)移项,得 y22y150.把方程左边因式分解,得(y5)(y3)0.y50 或 y30.y15,y23.测评反馈测评反馈24(5)将方程左边因式分解,得(x3)5x(x1)0.(x3)(4x1)0.(6)移项,得 4(3x1)225(x2)20.2(3x1)25(x2)20.2(3x1)5(x2)2(3x1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论